Continuum Mechanics and Thermodynamics

, Volume 30, Issue 5, pp 1155–1184 | Cite as

Quasistatic elastoplasticity via Peridynamics: existence and localization

  • Martin Kružík
  • Carlos Mora-Corral
  • Ulisse StefanelliEmail author
Original Article


Peridynamics is a nonlocal continuum mechanical theory based on minimal regularity on the deformations. Its key trait is that of replacing local constitutive relations featuring spacial differential operators with integrals over differences of displacement fields over a suitable positive interaction range. The advantage of such perspective is that of directly including nonregular situations, in which discontinuities in the displacement field may occur. In the linearized elastic setting, the mechanical foundation of the theory and its mathematical amenability have been thoroughly analyzed in the last years. We present here the extension of Peridynamics to linearized elastoplasticity. This calls for considering the time evolution of elastic and plastic variables, as the effect of a combination of elastic energy storage and plastic energy dissipation mechanisms. The quasistatic evolution problem is variationally reformulated and solved by time discretization. In addition, by a rigorous evolutive \(\Gamma \)-convergence argument we prove that the nonlocal peridynamic model converges to classic local elastoplasticity as the interaction range goes to zero.


Peridynamics Elastoplasticity Variational formulation Existence Localization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Nonlocal diffusion problems, Mathematical Surveys and Monographs, 165. American Mathematical Society, Real Sociedad Matemática Española. Providence, RI (2010)Google Scholar
  2. 2.
    Bellido, J.C., Mora-Corral, C.: Existence for nonlocal variational problems in peridynamics. SIAM J. Math. Anal. 46, 890–916 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bellido, J.C., Mora-Corral, C., Pedregal, P.: Hyperelasticity as a \(\Gamma \)-limit of Peridynamics when the horizon goes to zero. Calc. Var. Partial Differ. Equ. 54, 1643–1670 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bobaru, F., Foster, J.T., Geubelle, P.H., Silling, S.A. (eds.): Handbook of Peridynamic Modeling, Advances in Applied Mathematics, CRC Press, (2017)Google Scholar
  5. 5.
    Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations, pp. 439–455. IOS Press, Amsterdam (2001)Google Scholar
  6. 6.
    Brezis, H.: How to recognize constant functions. A connection with Sobolev spaces. Uspekhi Mat. Nauk 57, 59–74 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence, Progress in Nonlinear Differential Equations and Their Applications, 8. Birkhäuser Boston Inc., Boston (1993)Google Scholar
  8. 8.
    De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58, 842–850 (1975)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J. Elast. 113, 193–217 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23, 493–540 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Emmrich, E., Lehoucq, R.B., Puhst, D.: Peridynamics: a nonlocal continuum theory. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations VI, Lecture Notes in Computational Science and Engineering, vol. 89, pp. 45–65. Springer, Berlin (2008)CrossRefGoogle Scholar
  13. 13.
    Emmrich, E., Puhst, D.: Survey of existence results in nonlinear peridynamics in comparison with local elastodynamics. Comput. Methods Appl. Math. 15, 483–496 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Emmrich, E., Puhst, D.: A short note on modeling damage in peridynamics. J. Elast. 123, 245–252 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gunzburger, M., Lehoucq, R.B.: A nonlocal vector calculus with application to nonlocal boundary value problems. Multiscale Model. Simul. 8, 1581–1598 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Han, W., Reddy, B.D.: Plasticity, vol. 9 of Interdisciplinary Applied Mathematics, Springer, New York, second ed., (2013). Mathematical theory and numerical analysisGoogle Scholar
  17. 17.
    Hu, W., Ha, Y.D., Bobaru, F.: Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput. Methods Appl. Mech. Eng. 217–220, 247–261 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Madenci, E., Oterkus, S.: Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J. Mech. Phys. Solids 86, 192–219 (2016)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Mengesha, T.: Nonlocal Korn-type characterization of Sobolev vector fields. Commun. Contemp. Math. 14, 1250028 (2012). 28MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mengesha, T., Du, Q.: On the variational limit of a class of nonlocal functionals related to peridynamics. Nonlinearity 28, 3999–4035 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mengesha, T., Du, Q.: Nonlocal constrained value problems for a linear Peridynamic Navier equation. J. Elast. 116, 27–51 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mengesha, T., Spector, D.: Localization of nonlocal gradients in various topologies. Calc. Var. Partial Differ. Equ. 52, 253–279 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mielke, A., Roubíček, T.: Rate-Independent Systems. Theory and Application, vol. 193 of Applied Mathematical Sciences. Springer, New York (2015)zbMATHGoogle Scholar
  24. 24.
    Mielke, A., Roubíček, T., Stefanelli, U.: \(\Gamma \)-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Differ. Equ. 31, 387–416 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ponce, A.C.: An estimate in the spirit of Poincaré’s inequality. J. Eur. Math. Soc. 6, 1–15 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ponce, A.C.: A new approach to Sobolev spaces and connections to \(\Gamma \)-convergence. Calc. Var. Partial Differ. Equ. 19, 229–255 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Seleson, P., Parks, M.L., Gunzburger, M., Lehoucq, R.B.: Peridynamics as an upscaling of molecular dynamics. Multiscale Model. Simul. 8, 204–227 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Silling, S.A.: Linearized theory of peridynamic states. J. Elast. 99, 85–111 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Silling, S.A., Lehoucq, R.B.: Convergence of Peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–166 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Martin Kružík
    • 1
  • Carlos Mora-Corral
    • 2
  • Ulisse Stefanelli
    • 3
    • 4
    Email author
  1. 1.Institute of Information Theory and AutomationAcademy of SciencesPrague 8Czech Republic
  2. 2.Departamento de Matemáticas, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  3. 3.Faculty of MathematicsUniversity of ViennaWienAustria
  4. 4.Istituto di Matematica Applicata e Tecnologie Informatiche E. MagenesPaviaItaly

Personalised recommendations