Continuum Mechanics and Thermodynamics

, Volume 30, Issue 5, pp 1145–1154 | Cite as

The use of computational thermodynamics for the determination of surface tension and Gibbs–Thomson coefficient of multicomponent alloys

  • D. J. S. Ferreira
  • B. N. Bezerra
  • M. N. Collyer
  • A. Garcia
  • I. L. FerreiraEmail author
Original Article


The simulation of casting processes demands accurate information on the thermophysical properties of the alloy; however, such information is scarce in the literature for multicomponent alloys. Generally, metallic alloys applied in industry have more than three solute components. In the present study, a general solution of Butler’s formulation for surface tension is presented for multicomponent alloys and is applied in quaternary Al–Cu–Si–Fe alloys, thus permitting the Gibbs–Thomson coefficient to be determined. Such coefficient is a determining factor to the reliability of predictions furnished by microstructure growth models and by numerical computations of solidification thermal parameters, which will depend on the thermophysical properties assumed in the calculations. The Gibbs–Thomson coefficient for ternary and quaternary alloys is seldom reported in the literature. A numerical model based on Powell’s hybrid algorithm and a finite difference Jacobian approximation has been coupled to a Thermo-Calc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting liquidus temperature, latent heat, alloy density, surface tension and Gibbs–Thomson coefficient for Al–Cu–Si–Fe hypoeutectic alloys to be calculated, as an example of calculation capabilities for multicomponent alloys of the proposed method. The computed results are compared with thermophysical properties of binary Al–Cu and ternary Al–Cu–Si alloys found in the literature and presented as a function of the Cu solute composition.


Castings Thermophysical properties Computational thermodynamics Ternary Al–Cu–Si alloys Quaternary Al–Cu–Si–Fe alloys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Perez, M.: Gibbs–Thomson effects in phase transformations. Scr. Mater. 52, 709–712 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Zinn, T., Willner, L., Lund, R.: Nanoscopic confinement through self-assembly: crystallization within micellar cores exhibits simple Gibbs–Thomson behavior. Phys. Rev. Lett. 113(238305), 238305 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Bouchard, D., Kirkaldy, J.S.: Prediction of dendrite arm spacings in unsteady and steady-state heat flow of unidirectionally solidified binary alloys. Metall. Mater. Trans. B 28B, 651–663 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Hunt, J.D., Lu, S.Z.: Numerical modeling of cellular/dendritic array growth: spacing and structure predictions. Metall. Mater. Trans. A 27, 611–623 (1996)CrossRefGoogle Scholar
  5. 5.
    Rappaz, M., Boettinger, W.J.: On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients. Acta Mater. 47, 3205–3219 (1999)CrossRefGoogle Scholar
  6. 6.
    Kurz, W., Fisher, J.D.: Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall. 29, 11–20 (1981)CrossRefGoogle Scholar
  7. 7.
    Trivedi, R.: A comparison of theory and experiments. Metall. Mater. Trans. 15A, 977–982 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    Goulart, P.R., Cruz, K.S., Spinelli, J.E., Ferreira, I.L., Cheung, N., Garcia, A.: Cellular growth during transient directional solidification of hypoeutectic Al–Fe alloys. J. Alloys Compd. 470, 589–599 (2009)CrossRefGoogle Scholar
  9. 9.
    Costa, T.A., Moreira, A.L., Moutinho, D.J., Dias, M., Ferreira, I.L., Spinelli, J.E., Rocha, O.L., Garcia, A.: Growth direction and Si alloying affecting directionally solidified structures of Al–Cu–Si alloys. Mater. Sci. Technol. 31, 1103–1112 (2015)CrossRefGoogle Scholar
  10. 10.
    Gündüz, M., Hunt, J.D.: The measurement of solid-liquid surface energies in the Al–Cu, Al–Si and Pb–Sn systems. Acta Metall. 33, 1651–1672 (1985)CrossRefGoogle Scholar
  11. 11.
    Gündüz, M., Hunt, J.D.: Solid–liquid surface energy in the Al–Mg system. Acta Metall. 37, 1839–1845 (1989)CrossRefGoogle Scholar
  12. 12.
    Marasli, N., Hunt, J.D.: Solid-liquid surface energies in the \(\text{ Al-CuAl }_{2}\), \(\text{ Al-NiAl }_{3}\) and Al–Ti systems. Acta Mater. 44, 1085–1096 (1996)CrossRefGoogle Scholar
  13. 13.
    Keslioglu, K., Marasli, N.: Solid–liquid interfacial energy of the eutectoid \(\beta \) phase in the Al–Zn eutectic system. Mater Sci. Eng. A 369, 294–301 (2004)CrossRefGoogle Scholar
  14. 14.
    Keslioglu, K., Gunduz, M., Kaya, H., Çadirli, E.: Solid–liquid interfacial energy in the Al–Ti system. Mater. Lett. 58, 3067–3073 (2004)CrossRefGoogle Scholar
  15. 15.
    Aksöz, S., Ocak, Y., Marasli, N., Keslioglu, K.: Dependency of the thermal and electrical conductivity on the temperature and composition of Cu in the Al based Al–Cu alloys. Exp. Therm. Fluid Sci. 35, 395–404 (2011)CrossRefGoogle Scholar
  16. 16.
    Butler, J.A.V.: The thermodynamics of the surfaces of solutions. Proc. R. Soc. A 135, 348–375 (1932)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Speiser, R., Poirier, D.R., Yeum, K.S.: Surface tension of binary liquid alloys. Scr. Metall. 21, 68–692 (1987)CrossRefGoogle Scholar
  18. 18.
    Yeum, K.S., Speiser, R., Poirier, D.R.: Estimation of the surface tensions of binary liquid alloys. Metall. Trans. 20B, 693–703 (1989)CrossRefGoogle Scholar
  19. 19.
    Picha, R., Vrestal, J., Kroupa, A.: Prediction of alloy surface tension using a thermodynamic database. CALPHAD 28, 141–146 (2004)CrossRefGoogle Scholar
  20. 20.
    Brillo, J., Egry, I., Matsushita, T.: Density and surface tension of liquid ternary Ni–Cu–Fe alloys. Int. J. Thermophys. 27, 1778–1791 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Tanaka, T., Lida, T.: Application of a thermodynamic database to the calculation of surface. Tension for iron-base liquid alloys. Steel Res. 65, 21–28 (1994)CrossRefGoogle Scholar
  22. 22.
    Miettinen, J.: Thermodynamic–kinetic model for the simulation of solidification in binary copper alloys and calculation of thermophysical properties. Comput. Mater. Sci. 36, 367–380 (2006)CrossRefGoogle Scholar
  23. 23.
    Jácome, P.A.D., Landim, M.C., Garcia, A., Furtado, A.F., Ferreira, I.L.: The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs–Thomson coefficient of aluminum based alloys. Thermochim. Acta 523, 142–149 (2011)CrossRefGoogle Scholar
  24. 24.
    Jácome, P.A.D., Moutinho, D.J., Gomes, L.G., Garcia, A., Ferreira, A.F., Ferreira, I.L.: The application of computational thermodynamics for the determination of surface tension and Gibbs–Thomson coefficient of aluminum ternary alloys. Mater. Sci. Forum 730–732, 871–876 (2013)Google Scholar
  25. 25.
    Hoar, T.P., Melford, D.A.: The surface tension of binary liquid mixtures: lead + tin and lead + indium alloys. Trans. Faraday Soc. 53, 315–326 (1957)CrossRefGoogle Scholar
  26. 26.
    Gasior, W., Moser, Z., Pstrus, J., Krzyzak, B., Fitzner, K.: Surface tension and thermodynamic properties of liquid Ag–Bi solutions. J. Phase Equilib. 24, 40–49 (2003)CrossRefGoogle Scholar
  27. 27.
    Tanaka, T., Hack, K., Lida, T., Hara, S.: Application of thermodynamic databases to the evaluation of surface tension of molten alloys, salt mixture and oxide mixtures. Z. Metallkd. 87, 380–389 (1996)Google Scholar
  28. 28.
    Tanaka, T., Hack, K., Hara, S.: Use of thermodynamic data to determine surface tension and viscosity of metallic alloys. MRS Bull. 24, 45–51 (1999)CrossRefGoogle Scholar
  29. 29.
    Kasama, A., Inui, T., Morita, Z.: Measurements of surface tension of liquid Ag–Au and Cu–(Fe, Co, Ni) binary alloys. Jpn. Inst. Met. 42, 1206–1212 (1978)CrossRefGoogle Scholar
  30. 30.
    Hajra, J.P., Lee, H.K., Frohberg, M.G.Z.: Calculation of surface tension of liquid binary systems from the data of the pure components and the thermodynamic infinite dilution values. Z. Metallkde. 82, 603–608 (1991)Google Scholar
  31. 31.
    Hajra, J.P., Frohberg, M.G.Z., Lee, H.K.: Calculation of surface tension of liquid binary systems from the data of the pure components and the thermodynamic infinite dilution values. Z. Metallkde. 82, 603–608 (1991)Google Scholar
  32. 32.
    Lee, H.K., Hajra, J.P., Frohberg, M.G.Z.: Calculation of the surface tensions in liquid ternary metallic systems. Z. Metallkde. 83, 638–643 (1992)Google Scholar
  33. 33.
    Lee, H.K., Frohberg, M.G.Z., Hajra, J.P.: The determination of the surface tensions of liquid iron, nickel and iron–nickel alloys using the electromagnetic oscillating droplet technique. Steel Res. 64, 191–196 (1993)CrossRefGoogle Scholar
  34. 34.
    Tanaka, T., Kitamura, T.: Evaluation of surface tension of molten ionic mixtures, I. A. Back. ISIJ Int. 46, 400–406 (2006)CrossRefGoogle Scholar
  35. 35.
    Nascimento, F.C., Paresque, M.C.C., de Castro, J.A., Jácome, P.A.D., Garcia, A., Ferreira, I.L.: Application of computational thermodynamics to the determination of thermophysical properties as a function of temperature for multicomponent Al-based alloys. Thermochim. Acta 619, 1–7 (2015)CrossRefGoogle Scholar
  36. 36.
    Jácome, P.A.D., Fernandes, M.T., Garcia, A., Ferreira, A.F., Castro, J.A., Ferreira, I.L.: Application of computational thermodynamics to the evolution of surface tension and Gibbs–Thomson Coefficient during multicomponent aluminum alloy solidification. Mater. Sci. Forum 869, 416–422 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • D. J. S. Ferreira
    • 1
  • B. N. Bezerra
    • 1
  • M. N. Collyer
    • 1
  • A. Garcia
    • 2
  • I. L. Ferreira
    • 1
    Email author
  1. 1.Faculty of Mechanical EngineeringFederal University of Pará, UFPABelémBrazil
  2. 2.Department of Manufacturing and Materials EngineeringUniversity of Campinas – UNICAMPCampinasBrazil

Personalised recommendations