Advertisement

Continuum Mechanics and Thermodynamics

, Volume 30, Issue 5, pp 1039–1057 | Cite as

Discrete is it enough? The revival of Piola–Hencky keynotes to analyze three-dimensional Elastica

  • Emilio Turco
Original Article

Abstract

Complex problems such as those concerning the mechanics of materials can be confronted only by considering numerical simulations. Analytical methods are useful to build guidelines or reference solutions but, for general cases of technical interest, they have to be solved numerically, especially in the case of large displacements and deformations. Probably continuous models arose for producing inspiring examples and stemmed from homogenization techniques. These techniques allowed for the solution of some paradigmatic examples but, in general, always require a discretization method for solving problems dictated by the applications. Therefore, and also by taking into account that computing powers are nowadays more largely available and cheap, the question arises: why not using directly a discrete model for 3D beams? In other words, it could be interesting to formulate a discrete model without using an intermediate continuum one, as this last, at the end, has to be discretized in any case. These simple considerations immediately evoke some very basic models developed many years ago when the computing powers were practically inexistent but the problem of finding simple solutions to beam deformation problem was already an emerging one. Actually, in recent years, the keynotes of Hencky and Piola attracted a renewed attention [see, one for all, the work (Turco et al. in Zeitschrift für Angewandte Mathematik und Physik 67(4):1–28, 2016)]: generalizing their results, in the present paper, a novel directly discrete three-dimensional beam model is presented and discussed, in the framework of geometrically nonlinear analysis. Using a stepwise algorithm based essentially on Newton’s method to compute the extrapolations and on the Riks’ arc-length method to perform the corrections, we could obtain some numerical simulations showing the computational effectiveness of presented model: Indeed, it presents a convenient balance between accuracy and computational cost.

Keywords

Three-dimensional inextensible elastic beams Large deformations Lagrangian models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für Angewandte Mathematik und Physik 67(4), 1–28 (2016)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Hencky, H.: Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette. Ph.D. thesis, Engelmann (1921)Google Scholar
  3. 3.
    dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The Complete Works of Gabrio Piola: Volume I-Commented English Translation. Springer (2014)Google Scholar
  4. 4.
    dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The Complete Works of Gabrio Piola: Volume II-Commented English Translation. Springer (2019)Google Scholar
  5. 5.
    dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bilotta, A., Formica, G., Turco, E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26, 1155–1175 (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane curved beams. Math. Mech. Solids 21(5), 562–577 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cazzani, A., Malagù, M., Turco, E., Stochino, F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21(2), 182–209 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)CrossRefGoogle Scholar
  11. 11.
    Turco, E., Barcz, K., Pawlikowski, M., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations. Zeitschrift für Angewandte Mathematik und Physik 67(122), 1–16 (2016)MathSciNetMATHGoogle Scholar
  12. 12.
    Turco, E., Barcz, K., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part II: comparison with experimental evidence. Zeitschrift für Angewandte Mathematik und Physik 67(123), 1–16 (2016)MathSciNetMATHGoogle Scholar
  13. 13.
    Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)CrossRefGoogle Scholar
  14. 14.
    Turco, E., Rizzi, N.L.: Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields. Mech. Res. Commun. 77, 65–69 (2016)CrossRefGoogle Scholar
  15. 15.
    Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. Part B Eng. 118, 1–14 (2017)CrossRefGoogle Scholar
  16. 16.
    Challamel, N., Kocsis, A., Wang, C.M.: Discrete and non-local elastica. Int. J. Non-Linear Mech. 77, 128–140 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, H., Wang, C.M., Challamel, N.: Buckling and vibration of Hencky bar-chain with internal elastic springs. Int. J. Mech. Sci. 119, 383–395 (2016)CrossRefGoogle Scholar
  18. 18.
    Zhang, H., Wang, C.M., Ruocco, E., Challamel, N.: Hencky bar-chain model for buckling and vibration analyses of non-uniform beams on variable elastic foundation. Eng. Struct. 126, 252–263 (2016)CrossRefGoogle Scholar
  19. 19.
    Antman, S.S.: Nonlinear Problems in Elasticity, 2nd edn. Springer, New York (1995)CrossRefMATHGoogle Scholar
  20. 20.
    Steigmann, D.J., Faulkner, M.G.: Variational theory for spatial rods. J. Elast. 33(1), 1–26 (1993)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Simo, J.C., Vu-Quoc, L.: A geometrically-exact rod model incorporation shear and torsion-warping deformation. Int. J. Solids Struct. 27(3), 371–393 (1991)CrossRefMATHGoogle Scholar
  22. 22.
    Cao, D.Q., Tucker, R.W.: Nonlinear dynamics of elastic rods using the Cosserat theory: modelling and simulation. Int. J. Solids Struct. 45, 460–477 (2008)CrossRefMATHGoogle Scholar
  23. 23.
    Rodrigues, O.: Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. Journal de mathématiques pure at appliquées 1(5), 380–440 (1840)Google Scholar
  24. 24.
    O’Reilly, O.M.: Intermediate Dynamics for Engineers: A Unified Treatment of Newton-Euler and Lagrangian Mechanics. Cambridge University Press, New York (2008)CrossRefMATHGoogle Scholar
  25. 25.
    Euler, L.: Nova methodus motum corporum rigidorum determinandi. Novi Commentari Academiae Scientiarum Imperalis Petropolitanae 20, 208–238 (1775)Google Scholar
  26. 26.
    Eremeyev, V.A., Altenbach, H. (eds.).: Basics of mechanics of micropolar shells. In: Shell-like Structures. Springer (2017)Google Scholar
  27. 27.
    dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenisation, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472, 2185 (2016)Google Scholar
  28. 28.
    Riks, E.: An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 15, 529–551 (1979)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Turco, E., Caracciolo, P.: Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements. Comput. Methods Appl. Mech. Eng. 190, 691–706 (2000)ADSCrossRefMATHGoogle Scholar
  30. 30.
    Turco, E., Misra, A., Sarikaya, R., Lekszycki, T.: Quantitative analysis of deformation mechanism in pantographic substructures: experiments and modeling. Contin. Mech. Thermodyn. (2018) (submitted)Google Scholar
  31. 31.
    Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola–Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. (2018) (submitted).  https://doi.org/10.1016/j.ijsolstr.2016.11.008
  32. 32.
    Clarke, M.J., Hancock, G.J.: A study of incremental-iterative strategies for non-linear analyses. Int. J. Numer. Methods Eng. 29, 1365–1391 (1990)CrossRefGoogle Scholar
  33. 33.
    Pignataro, M., Rizzi, N., Luongo, A.: Stability, Bifurcation and Postcritical Behaviour of Elastic Structures. Elsevier, Amsterdam (1991)Google Scholar
  34. 34.
    Frisch-Fay, R.: Flexible Bars. Butterworths, London (1962)MATHGoogle Scholar
  35. 35.
    Alibert, J.-J., Della Corte, A., Giorgio, I., Battista, A.: Extensional elastica in large deformation as \(\gamma \)-limit of a discrete 1D mechanical system. Zeitschrift für angewandte Mathematik und Physik 68, 42 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Della Corte, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Equilibria of a clamped Euler beam (elastica) with distributed load: large deformations. Math. Models Methods Appl. Sci. 27, 1391 (2017)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170636 (2017)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Bertram, A., Glüge, R.: Gradient materials with internal constraints. Math. Mech. Complex Syst. 4(1), 1–15 (2016)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Zeitschrift für Angewandte Mathematik und Physik 67(3), 1–19 (2016)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Andreaus, U., Baragatti, P., Placidi, L.: Experimental and numerical investigations of the responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under harmonic excitation. Int. J. Non-Linear Mech. 80, 96–106 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 1–22 (2018).  https://doi.org/10.1007/s10659-017-9660-3
  42. 42.
    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3), 774–787 (2009)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Altenbach, H., Eremeyev, V.A.: On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Math. Mech. Complex Syst. 3(3), 273–283 (2015)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Giorgio, I., Della Corte, A., dell’Isola, F.: Dynamics of 1D nonlinear pantographic continua. Nonlinear Dyn. 88(1), 21–31 (2017)CrossRefGoogle Scholar
  46. 46.
    Engelbrecht, J., Berezovski, A.: Reflections on mathematical models of deformation waves in elastic microstructured solids. Math. Mech. Complex Syst. 3(1), 43–82 (2015)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Berezovski, A., Giorgio, I., Della Corte, A.: Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math. Mech. Solids 21(1), 37–51 (2016)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Turco, E., Giorgio, I., Misra, A., dell’Isola, F.: King post truss as a motif for internal structure of (meta)material with controlled properties. R. Soc. Open Sci. 4, 171153 (2017)CrossRefGoogle Scholar
  51. 51.
    dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Harrison, P., Alvarez, M.F., Anderson, D.: Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics. Int. J. Solids Struct. (2018).  https://doi.org/10.1016/j.ijsolstr.2016.11.008
  53. 53.
    Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 66(6), 3699–3725 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets. Asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28(1), 215–234 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Misra, A., Poorsolhjouy, P.: Grain- and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech. Res. Commun. 81, 1–6 (2017)CrossRefGoogle Scholar
  57. 57.
    Misra, A., Poorsolhjouy, P.: Elastic behavior of 2D grain packing modeled as micromorphic media based on granular micromechanics. J. Eng. Mech. 143(1), C4016005 (2017)CrossRefGoogle Scholar
  58. 58.
    Challamel, N., Nicot, F., Lerbet, J., Darve, F.: Stability of non-conservative elastic structures under additional kinematics constraints. Eng. Struct. 32(10), 3086–3092 (2010)CrossRefGoogle Scholar
  59. 59.
    De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Potts models in the continuum uniqueness and exponential decay in the restricted ensembles. J. Stat. Phys. 133(2), 281–345 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Coexistence of ordered and disordered phases in Potts models in the continuum. J. Stat. Phys. 134(2), 243–306 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Grimmett, G.R.: Correlation inequalities for the Potts model. Math. Mech. Complex Syst. 4(3–4), 327–334 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Architecture, Design and Urban planning (DADU)University of SassariAlghero, SassariItaly

Personalised recommendations