Phonon dispersion evolution in uniaxially strained aluminum crystal

  • Ranganathan Parthasarathy
  • Anil Misra
  • Sitaram Aryal
  • Lizhi Ouyang
Original Article
  • 9 Downloads

Abstract

The influence of loading upon the phonon dispersion of crystalline materials could be highly nonlinear with certain particular trends that depend upon the loading path. In this paper, we have calculated the influence of [100] uniaxial strain on the phonon dispersion and group velocities in fcc aluminum using second moments of position obtained from molecular dynamics (MD) simulation at 300 K. In contrast to nonlinear monotonic variation of both longitudinal and transverse phonon frequencies along the \(\Delta \), \(\Lambda \) and \(\Sigma \) lines of the first Brillouin zone under tension, transverse phonon branches along the \(\Lambda \) line show inflection at specific wavevectors when the compressive strain exceeds 5%. Further, the longitudinal group velocities along the high-symmetry \(\Delta \) line vary non-monotonically with strain, reaching a minimum at 5% compressive strain. Throughout the strain range studied, the equilibrium positions of atoms displace in an affine manner preserving certain static structural symmetry. We attribute the anomalies in the phonon dispersion to the non-affine evolution of second moments of atomic position, and the associated plateauing of force constants under the applied strain path.

Keywords

Anomalous phonon dispersion Non-affine thermal vibrations Local potential energy Non-monotonic evolution of phonon group velocities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Fultz, B.: Vibrational thermodynamics of materials. Prog. Mater Sci. 55(4), 247–352 (2010)CrossRefGoogle Scholar
  2. 2.
    Dove, M.T.: Introduction to Lattice Dynamics, vol. 4. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  3. 3.
    Born, M., Huang, K., Lax, M.: Dynamical theory of crystal lattices. Am. J. Phys. 23(7), 474 (1955)ADSCrossRefGoogle Scholar
  4. 4.
    Hatanaka, D., Dodel, A., Mahboob, I., Onomitsu, K., Yamaguchi, H.: Phonon propagation dynamics in band-engineered one-dimensional phononic crystal waveguides. New J. Phys. 17(11), 113032 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Monteverde, U., Pal, J., Migliorato, M.A., Missous, M., Bangert, U., Zan, R., Kashtiban, R., Powell, D.: Under pressure: control of strain, phonons and bandgap opening in rippled graphene. Carbon 91, 266–274 (2015)CrossRefGoogle Scholar
  6. 6.
    Horzum, S., Sahin, H., Cahangirov, S., Cudazzo, P., Rubio, A., Serin, T., Peeters, F.M.: Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe 2. Phys. Rev. B. 87(12), 125415 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Cheng, W., Wang, J., Jonas, U., Fytas, G., Stefanou, N.: Observation and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5(10), 830–836 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Huang, H., Xu, Y., Zou, X., Wu, J., Duan, W.: Tuning thermal conduction via extended defects in graphene. Phys. Rev. B. 87(20), 205415 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Zhao, Y., Liu, D., Chen, J., Zhu, L., Belianinov, A., Ovchinnikova, O.S., Unocic, R.R., Burch, M.J., Kim, S., Hao, H., et al.: Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation. arXiv preprint arXiv:1705.06845 (2017)
  10. 10.
    Wei, Z., Wehmeyer, G., Dames, C., Chen, Y.: Geometric tuning of thermal conductivity in three-dimensional anisotropic phononic crystals. Nanoscale 8(37), 16612–16620 (2016)CrossRefGoogle Scholar
  11. 11.
    Maire, J., Anufriev, R., Yanagisawa, R., Ramiere, A., Volz, S., Nomura, M.: Heat conduction tuning by wave nature of phonons. Sci. Adv. 3(8), e1700027 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Wirtz, L., Allard, A., Attaccalite, C., Lazzeri, M., Mauri, F., Rubio, A.: Tuning the Kohn Anomaly in the Phonon Dispersion of Graphene by Interaction with the Substrate and by Doping. In: APS Meeting Abstracts (2011)Google Scholar
  13. 13.
    Xu, Z., Li, Y., Liu, Z.: Controlling electronic and optical properties of layered SiC and GeC sheets by strain engineering. Mater. Des. 108, 333–342 (2016)CrossRefGoogle Scholar
  14. 14.
    Melnick, C., Kaviany, M.: Phonovoltaic. II. Tuning band gap to optical phonon in graphite. Phys. Rev. B. 93(12), 125203 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Hwang, J., Ihm, J., Kim, K.-S., Cha, M.-H.: Phonon softening and mechanical failure of graphene under tensile strain. In: APS Meeting Abstracts (2016)Google Scholar
  16. 16.
    Dong, J., Zhu, H., Chen, D.: Universal elastic-hardening-driven mechanical instability in \(\alpha \)-quartz and quartz homeotypes under pressure. Sci. Rep. 5, srep10810 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Aktürk, E., Aktürk, O.Ü., Ciraci, S.: Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties. Phys. Rev. B. 94(1), 14115 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Choudhury, N., Chaplot, S.L.: Ab initio studies of phonon softening and high-pressure phase transitions of \(\alpha \)-quartz Si O 2. Phys. Rev. B. 73(9), 94304 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Shi, L., Wu, L., Duan, Y., Hao, L., Hu, J., Yang, X., Tang, G.: Band structure, phase transition, phonon and elastic instabilities in calcium polonide under pressure: a first-principles study. Solid State Commun. 152(22), 2058–2062 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Clatterbuck, D.M., Krenn, C.R., Cohen, M.L., Morris Jr., J.W.: Phonon instabilities and the ideal strength of aluminum. Phys. Rev. Lett. 91(13), 135501 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Lanzillo, N.A., Thomas, J.B., Watson, B., Washington, M., Nayak, S.K.: Pressure-enabled phonon engineering in metals. Proc. Nat. Acad. Sci. 111(24), 8712–8716 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Zhang, A.-X., Liu, J.-T., Guo, S.-D., Li, H.-C.: Strain effects on phonon transport in antimonene investigated using a first-principles study. Phys. Chem. Chem. Phys. 19(22), 14520–14526 (2017)CrossRefGoogle Scholar
  23. 23.
    Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Yang, S., Wang, C., Sahin, H., Chen, H., Li, Y., Li, S.-S., Suslu, A., Peeters, F.M., Liu, Q., Li, J., et al.: Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15(3), 1660–1666 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Tambe, M.J., Bonini, N., Marzari, N.: Bulk aluminum at high pressure: a first-principles study. Phys. Rev. B. 77(17), 172102 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Akahama, Y., Nishimura, M., Kinoshita, K., Kawamura, H., Ohishi, Y.: Evidence of a fcc-hcp transition in aluminum at multimegabar pressure. Phys. Rev. Lett. 96(4), 45505 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Bhowmick, S., Shenoy, V.B.: Effect of strain on the thermal conductivity of solids. J. Chem. Phys. 125(16), 164513 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Misra, A., Ching, W.Y.: Theoretical Nonlinear Response of Complex Single Crystal Under Multi-axial Tensile Loading. Scientific Reports, vol. 3. Nature Publishing Group, London (2013)Google Scholar
  29. 29.
    Ching, W.Y., Rulis, P., Misra, A.: Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater. 5(8), 3067–3075 (2009)CrossRefGoogle Scholar
  30. 30.
    Zheludev, A., Shapiro, S.M.: Uniaxial stress dependence of the [qq0]-ta2 anomalous phonon branch in Ni2MnGa. Solid State Commun. 98(1), 35–39 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Shapiro, S.M., Svensson, E.C., Vettier, C., Hennion, B.: Uniaxial-stress dependence of the phonon behavior in the premartensitic phase of Ni 62.5 Al 37.5. Phys. Rev. B. 48(18), 13223 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    Ganguly, S., Mohanty, P.S., Schurtenberger, P., Sengupta, S., Yethiraj, A.: Contrasting the dynamics of elastic and non-elastic deformations across an experimental colloidal Martensitic transition. Soft Matter 13, 1–7 (2017)CrossRefGoogle Scholar
  33. 33.
    Ganguly, S., Sengupta, S., Sollich, P., Rao, M.: Nonaffine displacements in crystalline solids in the harmonic limit. Phys. Rev. E 87(4), 42801 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Wang, Y., Saal, J.E., Wang, J.-J., Saengdeejing, A., Shang, S.-L., Chen, L.-Q., Liu, Z.-K.: Broken symmetry, strong correlation, and splitting between longitudinal and transverse optical phonons of MnO and NiO from first principles. Phys. Rev. B. 82(8), 81104 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Wang, Y.U., Jin, Y.M.: Martensitic transformation precursors: phonon theory and critical experiments. arXiv preprint arXiv:1503.00027 (2015)
  36. 36.
    Yang, C., Yu, Z., Lu, P., Liu, Y., Ye, H., Gao, T.: Phonon instability and ideal strength of silicene under tension. Comput. Mater. Sci. 95, 420–428 (2014)CrossRefGoogle Scholar
  37. 37.
    Sun, Y., Thompson, S.E., Nishida, T.: Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 101(10), 104503 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Mitev, P.D., Hermansson, K., Montanari, B., Refson, K.: Soft modes in strained and unstrained rutile TiO\(_2\). Phys. Rev. B. 81(13), 134303 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Conley, H.J., Wang, B., Ziegler, J.I., Haglund Jr., R.F., Pantelides, S.T., Bolotin, K.I.: Bandgap engineering of strained monolayer and bilayer MoS\(_2\). Nano Lett. 13(8), 3626–3630 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Ni, Z.H., Yu, T., Lu, Y.H., Wang, Y.Y., Feng, Y.P., Shen, Z.X.: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2(11), 2301–2305 (2008)CrossRefGoogle Scholar
  41. 41.
    Yoon, D., Son, Y.-W., Cheong, H.: Strain-dependent splitting of the double-resonance Raman scattering band in graphene. Phys. Rev. Lett. 106(15), 155502 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Jin, Y.M., Wang, Y.U., Ren, Y.: Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena. NPJ Comput. Mater. 1, 15002 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Fobes, D.M., Zaliznyak, I.A., Tranquada, J.M., Xu, Z., Gu, G., He, X.-G., Ku, W., Zhao, Y., Matsuda, M., Garlea, V.O., et al.: Forbidden phonon: Dynamical signature of bond symmetry breaking in the iron chalcogenides. Physical Review B.; 94(12):121103 (2016)Google Scholar
  44. 44.
    Coslovich, G., Kemper, A.F., Behl, S., Huber, B., Bechtel, H.A., Sasagawa, T., Martin, M.C., Lanzara, A., Kaindl, R.A.: Ultrafast dynamics of vibrational symmetry breaking in a charge-ordered nickelate. Sci. Adv. 3(11), e1600735 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    Beecher, A.N., Semonin, O.E., Skelton, J.M., Frost, J.M., Terban, M.W., Zhai, H., Alatas, A., Owen, J.S., Walsh, A., Billinge, S.J.L.: Direct observation of dynamic symmetry breaking above room temperature in methylammonium lead iodide perovskite. ACS Energy Lett. 1(4), 880–887 (2016)CrossRefGoogle Scholar
  46. 46.
    Frost, J.M., Walsh, A.: What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 49(3), 528–535 (2016)CrossRefGoogle Scholar
  47. 47.
    Leguy, A.M.A., Frost, J.M., McMahon, A.P., Sakai, V.G., Kochelmann, W., Law, C., Li, X., Foglia, F., Walsh, A., O’regan, B.C., et al.: The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun. 6, 7125 (2015)CrossRefGoogle Scholar
  48. 48.
    Kong, L.T.: Phonon dispersion measured directly from molecular dynamics simulations. Comput. Phys. Commun. 182(10), 2201–2207 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)ADSCrossRefMATHGoogle Scholar
  50. 50.
    Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B. 29(12), 6443 (1984)ADSCrossRefGoogle Scholar
  51. 51.
    Stedman, R., Nilsson, G.: Observations on the fermi surface of aluminum by neutron spectrometry. Phys. Rev. Lett. 15(15), 634 (1965)ADSCrossRefGoogle Scholar
  52. 52.
    Mishin, Y., Farkas, D., Mehl, M.J., Papaconstantopoulos, D.A.: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B. 59(5), 3393–3407 (1999)ADSCrossRefGoogle Scholar
  53. 53.
    Zheludev, A., Shapiro, S.M., Wochner, P., Schwartz, A., Wall, M., Tanner, L.E.: Phonon anomaly, central peak, and microstructures in Ni\(_2\) MnGa. Phys. Rev. B. 51(17), 11310 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    Shapiro, S.M., Yang, B.X., Shirane, G., Noda, Y., Tanner, L.E.: Neutron scattering study of the martensitic transformation in a Ni-Al $\(\beta \)$-phase alloy. Phys. Rev. Lett. 62(11), 1298 (1989)ADSCrossRefGoogle Scholar
  55. 55.
    Xu, Y., Li, G.: Strain effect analysis on phonon thermal conductivity of two-dimensional nanocomposites. J. Appl. Phys. 106(11), 114302 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Parrish, K.D., Jain, A., Larkin, J.M., Saidi, W.A., McGaughey, A.J.H.: Origins of thermal conductivity changes in strained crystals. Phys. Rev. B. 90(23), 235201 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    Gullett, P.M., Horstemeyer, M.F., Baskes, M.I., Fang, H.: A deformation gradient tensor and strain tensors for atomistic simulations. Modell. Simul. Mater. Sci. Eng. 16(1), 15001 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    Ganguly, S., Sengupta, S.: Excess vibrational modes of a crystal in an external non-affine field. J. Chem. Sci. 129(7), 891–897 (2017)CrossRefGoogle Scholar
  59. 59.
    Das, T., Ganguly, S., Sengupta, S., Rao, M.: Pre-yield non-affine fluctuations and a hidden critical point in strained crystals. Sci. Rep. 5, 10644 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    Rosi, G., Auffray, N.: Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63, 120–134 (2016)CrossRefGoogle Scholar
  61. 61.
    Rosi, G., Placidi, L., Auffray, N.: On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech.-A/Solids 69, 179–191 (2017)Google Scholar
  62. 62.
    Placidi, L., Barchiesi, E., Della Corte, A.: Identification of two-dimensional pantographic structures with a linear d4 orthotropic second gradient elastic model accounting for external bulk double forces. In: Mathematical Modelling in Solid Mechanics, Springer, 211–232 (2017)Google Scholar
  63. 63.
    Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2014)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28(1–2), 215–234 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Misra, A., Poorsolhjouy, P.: Grain- and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech. Res. Commun. 81, 1–6 (2017)CrossRefGoogle Scholar
  66. 66.
    Misra, A., Poorsolhjouy, P.: Elastic behavior of 2d grain packing modeled as micromorphic media based on granular micromechanics. J. Eng. Mech. 143(1), C4016005 (2016)CrossRefGoogle Scholar
  67. 67.
    Eugster, S.R., Dell’Isola, F.: Exegesis of the Introduction and Sect. I from “Fundamentals of the Mechanics of Continua”** by E. Hellinger. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik. 97(4), 477–506 (2017)ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The Complete Works of Gabrio Piola, vol. I. Springer, Cham (2014)MATHGoogle Scholar
  69. 69.
    Weiner, J. H.: Statistical mechanics of elasticity. Wiley, New York (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical Sciences, Box 9616Tennessee State UniversityNashvilleUSA
  2. 2.Department of Civil, Environmental and Architectural EngineeringUniversity of KansasLawrenceUSA

Personalised recommendations