Advertisement

Continuum Mechanics and Thermodynamics

, Volume 30, Issue 5, pp 1011–1025 | Cite as

Euromech 579 Arpino 3–8 April 2017: Generalized and microstructured continua: new ideas in modeling and/or applications to structures with (nearly)inextensible fibers—a review of presentations and discussions

  • Marco Laudato
  • Fabio Di Cosmo
Original Article

Abstract

In the present paper, a rational report on Euromech 579, Generalized and Microstructured Continua: New ideas in modeling and/or Applications to Structures with (nearly)inextensible fibers (Arpino 3–8 April 2017), is provided. The main aim of the colloquium was to provide a forum for experts in generalized and microstructured continua with inextensible fibers to exchange ideas and get informed about the latest research trends in the domain. The interested reader will find more details about the colloquium at the dedicated web page http://www.memocsevents.eu/euromech579/.

Keywords

Euromech 579 Microstructured continua Modeling Inextensible fibers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by a grant from the Government of the Russian Federation (contract No. 14.Y26.31.0031).

References

  1. 1.
    Le Marrec, L., Zhang, D., Ostoja-Starzewski, M.: Three-dimensional vibrations of a helically wound cable modeled as a timoshenko rod. Acta Mech. 229, 1–19 (2017)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Contento, A., Luongo, A.: Static and dynamic consistent perturbation analysis for nonlinear inextensible planar frames. Comput. Struct. 123, 79–92 (2013)CrossRefGoogle Scholar
  3. 3.
    Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. B Eng. 118, 1–14 (2017)CrossRefGoogle Scholar
  4. 4.
    Sadovskaya, O., Sadovskii, V.: Mathematical Modeling in Mechanics of Granular Materials, vol. 21. Springer, Berlin (2012)zbMATHGoogle Scholar
  5. 5.
    Gusev, A.A., Lurie, S.A.: Symmetry conditions in strain gradient elasticity. Math. Mech. Solids 22(4), 683–691 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lurie, S.A., Volkov-Bogorodsky, D., Leontiev, A., Aifantis, E.: Eshelby’s inclusion problem in the gradient theory of elasticity: applications to composite materials. Int. J. Eng. Sci. 49(12), 1517–1525 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Tomic, A., Grillo, A., Federico, S.: Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79(5), 1027–1059 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Grillo, A., Wittum, G., Tomic, A., Federico, S.: Remodelling in statistically oriented fibre-reinforced materials and biological tissues. Math. Mech. Solids 20(9), 1107–1129 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Grillo, A., Carfagna, M., Federico, S.: An allen-cahn approach to the remodelling of fibre-reinforced anisotropic materials. J. Eng. Math. 109, 1–34 (2017)MathSciNetGoogle Scholar
  10. 10.
    Alibert, J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Giorgio, I.: Numerical identification procedure between a micro-cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift für angewandte Mathematik und Physik 67(4), 95 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    dell’Isola, F., Della Corte, A., Giorgio, I., Scerrato, D.: Pantographic 2D sheets. Int. J. Nonlinear Mech. 80, 200–208 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Scerrato, D., Giorgio, I., Rizzi, N.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Zeitschrift für angewandte Mathematik und Physik 67(3), 1–19 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization à la piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Alibert, J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Zeitschrift für angewandte Mathematik und Physik 66(5), 2855–2870 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik 67(4), 1–28 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. In: Proceedings of the Royal Society of London A, vol. 472, pp. 20150790. The Royal Society (2016)Google Scholar
  18. 18.
    Andreaus, U., Placidi, L., Rega, G.: Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2603–2616 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Battista, A., Rosa, L., dell’Erba, R., Greco, L.: Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena. Mathematics and Mechanics of Solids, page 1081286516657889, (2016)Google Scholar
  20. 20.
    Battista, A., Cardillo, C., Del Vescovo, D., Rizzi, N.L., Turco, E.: Frequency shifts induced by large deformations in planar pantographic continua. Nanomech. Sci. Technol. Int. J. 6(2), 161–178 (2015)CrossRefGoogle Scholar
  21. 21.
    Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)CrossRefGoogle Scholar
  22. 22.
    Turco, E., Rizzi, N.L.: Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields. Mech. Res. Commun. 77, 65–69 (2016)CrossRefGoogle Scholar
  23. 23.
    dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für angewandte Mathematik und Physik 66, 3473–3498 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)CrossRefGoogle Scholar
  25. 25.
    Giorgio, I., Della Corte, A., dell’Isola, F., Steigmann, D.J.: Buckling modes in pantographic lattices. C. R. Mec. 344(7), 487–501 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Niiranen, J., Khakalo, S., Balobanov, V., Niemi, A.H.: Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems. Comput. Methods Appl. Mech. Eng. 308, 182–211 (2016)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Khakalo, S., Balobanov, V., Niiranen, J.: Isogeometric static analysis of gradient-elastic plane strain/stress problems. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol. 42. Springer, Cham (2016)Google Scholar
  28. 28.
    Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Altenbach, H., Eremeyev, V.A.: On the variational analysis of vibrations of prestressed six-parameter shells. In: Muñoz-Rojas, P. (ed.) Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials. Advanced Structured Materials, vol. 49. Springer, Cham (2016)Google Scholar
  30. 30.
    Eremeyev, V., Altenbach, H.: Basics of mechanics of micropolar shells. In: Altenbach, H., Eremeyev, V. (eds.) Shell-like Structures. CISM International Centre for Mechanical Sciences (Courses and Lectures), vol. 572. Springer, Cham (2017)Google Scholar
  31. 31.
    Alibert, JJ., Della Corte, A., Seppecher, P.: Convergence of hencky-type discrete beam model to euler inextensible elastica in large deformation: rigorous proof. In: dell’Isola, F., Sofonea, M., Steigmann, D. (eds.) Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol. 69. Springer, Singapore (2017)Google Scholar
  32. 32.
    Placidi, L., Giorgio, I., Della Corte, A., Scerrato, D.: Euromech 563 cisterna di latina 17–21 March 2014 generalized continua and their applications to the design of composites and metamaterials: a review of presentations and discussions. Math. Mech. Solids 22(2), 144–157 (2017)CrossRefzbMATHGoogle Scholar
  33. 33.
    Della Corte, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Equilibria of a clamped euler beam (elastica) with distributed load: large deformations. Math. Models Methods Appl. Sci. 27(08), 1391–1421 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103(1), 127–157 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Greco, L., Giorgio, I., Battista, A.: In plane shear and bending for first gradient inextensible pantographic sheets: numerical study of deformed shapes and global constraint reactions. Math. Mech. Solids 22(10), 1950–1975 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Barchiesi, E., dell’Isola, F., Laudato, M., Placidi, L., Seppecher, P.: A 1D continuum model for beams with pantographic microstructure: asymptotic micro-macro identification and numerical results. In: dell’Isola, F., Eremeyev, V., Porubov, A. (eds.) Advances in Mechanics of Microstructured Media and Structures. Advanced Structured Materials, vol. 87. Springer, Cham (2018)Google Scholar
  39. 39.
    Romeo, M.: A microstructure continuum approach to electromagneto-elastic conductors. Contin. Mech. Thermodyn. 28(6), 1807–1820 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Romeo, M.: Electromagnetic field-current coupling in rigid polarized conductors. Math. Mech. Solids 23(1), 85–98 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Jung, A., Diebels, S.: Microstructural characterisation and experimental determination of a multiaxial yield surface for open-cell aluminium foams. Mater. Des. 131, 252–264 (2017)CrossRefGoogle Scholar
  42. 42.
    Heinze, S., Jung, A., Diebels, S., Düster, A.: Experimental and numerical investigation of metal foams undergoing large deformations. PAMM 16(1), 345–346 (2016)CrossRefGoogle Scholar
  43. 43.
    Karyakin, M.I., Shubchinskaia, N.Y.: The equilibrium and stability of the nonlinearly elastic cylinder with internal stresses. Mater. Phys. Mech. 28(1–2), 31–35 (2016)Google Scholar
  44. 44.
    Glüge, R., Bucci, S.: Does convexity of yield surfaces in plasticity have a physical significance? Math. Mech. Solids (2017).  https://doi.org/10.1177/1081286517721599
  45. 45.
    Desmorat, B., Desmorat, R.: Tensorial polar decomposition of 2D fourth-order tensors. C. R. Méc. 343(9), 471–475 (2015)CrossRefGoogle Scholar
  46. 46.
    Desmorat, B., Vannucci, P.: An alternative to the kelvin decomposition for plane anisotropic elasticity. Math. Methods Appl. Sci. 38(1), 164–175 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Sawangrat, C., Kato, S., Orlov, D., Ameyama, K.: Harmonic-structured copper: performance and proof of fabrication concept based on severe plastic deformation of powders. J. Mater. Sci. 49(19), 6579–6585 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    Poncelet, M., Auffray, N., Jailin, C., Somera, A., Morel, C.: Experimental strain gradient evidence in non-central symmetric lattice. In: EUROMECH-Colloquium 579 on Generalized and Microstructured Continua (2017)Google Scholar
  49. 49.
    Rosi, G., Placidi, L., Auffray, N.: On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech. A Solids 69, 179–191 (2017)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Pawlikowski, M., Barcz, K.: Nonlinear viscoelastic constitutive model for bovine cortical bone tissue. Biocybern. Biomed. Eng. 36(3), 491–498 (2016)CrossRefGoogle Scholar
  51. 51.
    Turco, E., Barcz, K., Pawlikowski, M., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations. Zeitschrift für angewandte Mathematik und Physik 67(5), 122 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Brandl, E., Heckenberger, U., Holzinger, V., Buchbinder, D.: Additive manufactured alsi10mg samples using selective laser melting (slm): microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34, 159–169 (2012)CrossRefGoogle Scholar
  53. 53.
    Wautier, A., Bonelli, S., Nicot, F.: Scale separation between grain detachment and grain transport in granular media subjected to an internal flow. Granul. Matter 19(2), 22 (2017)CrossRefGoogle Scholar
  54. 54.
    Nicot, F., Xiong, H., Wautier, A., Lerbet, J., Darve, F.: Force chain collapse as grain column buckling in granular materials. Granul. Matter 19(2), 18 (2017)CrossRefGoogle Scholar
  55. 55.
    Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids (2015).  https://doi.org/10.1177/1081286515576821
  57. 57.
    Misra, A., Poorsolhjouy, P.: Granular micromechanics model of anisotropic elasticity derived from gibbs potential. Acta Mech. 227(5), 1393 (2016)CrossRefzbMATHGoogle Scholar
  58. 58.
    Misra, A., Poorsolhjouy, P.: Micro-macro scale instability in 2D regular granular assemblies. Contin. Mech. Thermodyn. 27(1–2), 63 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28(1–2), 215 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Li, X.: Internal structure quantification for granular constitutive modeling. J. Eng. Mech. 143(4), C4016001 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    Misra, A., Chang, C.S.: Effective elastic moduli of heterogeneous granular solids. Int. J. Solids Struct. 30(18), 2547–2566 (1993)CrossRefzbMATHGoogle Scholar
  62. 62.
    George, D., Spingarn, C., Dissaux, C., Nierenberger, M., Rahman, Ranya Abdel, Rémond, Yves: Examples of multiscale and multiphysics numerical modeling of biological tissues. Bio-Med. Mater. Eng. 28(s1), S15–S27 (2017)CrossRefGoogle Scholar
  63. 63.
    Nasedkin, A.V., Nasedkina, A.A, Rybyanets, A.N.: Modeling and computer design of piezoceramic materials with stochastic microporous structure and local alloying pore surfaces. In: Vandamme, M., Dangla, P., Pereira, J-M., Ghabezloo, S. (eds.) Poromechanics VI, pp. 724–731Google Scholar
  64. 64.
    Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Javili, A., Steinmann, P., Mosler, J.: Micro-to-macro transition accounting for general imperfect interfaces. Comput. Methods Appl. Mech. Eng. 317, 274–317 (2017)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    Javili, A., Ottosen, N.S., Ristinmaa, M., Mosler, J.: Aspects of interface elasticity theory. Math. Mech Solids (2017).  https://doi.org/10.1177/1081286517699041
  67. 67.
    Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65(1), 010802 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    Nazarenko, L., Stolarski, H., Altenbach, H.: Effective properties of short-fiber composites with gurtin-murdoch model of interphase. Int. J. Solids Struct. 97, 75–88 (2016)CrossRefGoogle Scholar
  69. 69.
    Rahali, Y., Ganghoffer, J.F., Chaouachi, F., Zghal, A.: Strain gradient continuum models for linear pantographic structures: a classification based on material symmetries. J. Geom. Symmetry Phys. 40, 35–52 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Eugster, S.R.: Geometric continuum mechanics and induced beam theories. Springer (2016)Google Scholar
  71. 71.
    Eugster, S.R., Glocker, C.: Determination of the transverse shear stress in an Euler–Bernoulli beam using non-admissible virtual displacements. PAMM 14(1), 187–188 (2014)CrossRefGoogle Scholar
  72. 72.
    Liebold, C., Müller, W.H.: Measuring material coefficients of higher gradient elasticity by using AFM techniques and raman-spectroscopy. In: Altenbach, H., Forest, S., Krivtsov, A. (eds.) Generalized Continua as Models for Materials. Advanced Structured Materials, vol. 22. Springer, Berlin, Heidelberg (2013)Google Scholar
  73. 73.
    Eremeyev, V.A., Skrzat, A., Stachowicz, F.: On computational evaluation of stress concentration using micropolar elasticity. In: International Conference on Applied Physics, System Science and Computers, pp. 199–205. Springer (2017)Google Scholar
  74. 74.
    Varygina, M.: Numerical modeling of micropolar thin elastic plates. In: International Conference on Numerical Analysis and Its Applications, pp. 690–697. Springer (2016)Google Scholar
  75. 75.
    Boisse, P., Hamila, N., Madeo, A.: Simulations of 3D textile composite reinforcements. Specificities of the mechanical behavior. In: AIP Conference Proceedings, vol. 1896, pp. 030012. AIP Publishing (2017)Google Scholar
  76. 76.
    Grigorenko, A.Y., Vlaikov, G.G.: Investigation of the static and dynamic behaviour of anisotropic cylindrical bodies with noncircular cross-section. Int. J. Solids Struct. 41(9), 2781–2798 (2004)CrossRefzbMATHGoogle Scholar
  77. 77.
    Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: dell’Isola, F., Sofonea, M., Steigmann, D. (eds.) Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol. 69. Springer, Singapore (2017)Google Scholar
  78. 78.
    Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Sumbatyan, M. (eds.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Advanced Structured Materials, vol. 59. Springer, Singapore (2017)Google Scholar
  79. 79.
    Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik 67(5), 121 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Cuomo, M., Dell’ÄôIsola, F., Greco, L., Rizzi, N.L.: First versus second gradient energies for planar sheets with two families of inextensible fibres: investigation on deformation boundary layers, discontinuities and geometrical instabilities. Compos. Part B: Eng. 115, 423–448 (2017)CrossRefGoogle Scholar
  81. 81.
    Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)MathSciNetCrossRefGoogle Scholar
  82. 82.
    Contrafatto, L., Cuomo, M.: A framework of elastic-plastic damaging model for concrete under multiaxial stress states. Int. J. Plast 22(12), 2272–2300 (2006)CrossRefzbMATHGoogle Scholar
  83. 83.
    Madenci, E., Oterkus, S.: Peridynamic modeling of thermo-oxidative damage evolution in a composite lamina. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 0197 (2017)Google Scholar
  84. 84.
    Sheydakov, D.N., Altenbach, H.: Stability of inhomogeneous micropolar cylindrical tube subject to combined loads. Math. Mech. Solids 21(9), 1082–1094 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Berezovski, A.: Internal variables associated with microstructures in solids. Mech. Res. Commun. (2017).  https://doi.org/10.1016/j.mechrescom.2017.07.011
  86. 86.
    Galich, P., Slesarenko, V., Rudykh, S.: Elastic wave propagation in soft microstructured composites undergoing finite deformations. PAMM 16(1), 627–628 (2016)CrossRefGoogle Scholar
  87. 87.
    Erofeev, V.I., Kazhaev, V.V., Pavlov, I.S.: Inelastic interaction and splitting of strain solitons propagating in a one-dimensional granular medium with internal stress. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol. 42. Springer, Cham (2016)Google Scholar
  88. 88.
    Cheviakov, A.F., Ganghoffer, J.F., St Jean, S.: Fully nonlinear wave models in fiber-reinforced anisotropic incompressible hyperelastic solids. Int. J. Nonlinear Mech. 71, 8–21 (2015)ADSCrossRefGoogle Scholar
  89. 89.
    Cheviakov, A.F., Ganghoffer, J.F., Rahouadj, R.: Finite strain plasticity models revealed by symmetries and integrating factors: the case of dafalias spin model. Int. J. Plast 44, 47–67 (2013)CrossRefGoogle Scholar
  90. 90.
    Rosi, G., Auffray, N.: Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63, 120–134 (2016)CrossRefGoogle Scholar
  91. 91.
    Rosi, G., Placidi, L., Auffray, N.: Anisotropic wave propagation within strain gradient framework: a focus on a mixed static-dynamic numerical procedure for parameter identification. In: EUROMECH-Colloquium 579 on Generalized and microstructured continua, vol. 69, pp. 195–206 (2017)Google Scholar
  92. 92.
    Sadovskii, V.M., Sadovskaya, O.V.: On the acoustic approximation of thermomechanical description of a liquid crystal. Phys. Mesomech. 16(4), 312–318 (2013)CrossRefGoogle Scholar
  93. 93.
    Madeo, A., Barbagallo, G., Collet, M., d’Agostino, M.V., Miniaci, M., Neff, P.: Relaxed micromorphic modeling of the interface between a homogeneous solid and a band-gap metamaterial: new perspectives towards metastructural design. Math. Mech. Solids (2017).  https://doi.org/10.1177/1081286517728423
  94. 94.
    Ganzosch, G., dell’Isola, F., Turco, e, Lekszycki, T., Müller, W.H.: Shearing tests applied to pantographic structures. Acta Polytech. CTU Proc. 7, 1–6 (2016)CrossRefGoogle Scholar
  95. 95.
    Lekszycki, T.: Optimality conditions in modelling of bone adaptation phenomenon. J. Theor. Appl. Mech. 3, 607–623 (1999)zbMATHGoogle Scholar
  96. 96.
    Lekszycki, T.: Modelling of bone adaptation based on an optimal response hypothesis. Meccanica 37(4–5), 343–354 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  97. 97.
    Lekszycki, T.: Functional adaptation of bone as an optimal control problem. J. Theor. Appl. Mech. 43(3), 555–574 (2005)Google Scholar
  98. 98.
    Bednarczyk, E., Lekszycki, T.: A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset. Zeitschrift für angewandte Mathematik und Physik 67(4), 1–14 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  99. 99.
    Lekszycki, Tomasz, dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 92(6), 426–444 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  100. 100.
    Lu, Y., Lekszycki, T.: Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Math. Mech. Solids 22(10), 1997–2010 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  101. 101.
    Crevacore, E., Tosco, T., Sethi, R., Boccardo, G., Marchisio, D.L.: Recirculation zones induce non-fickian transport in three-dimensional periodic porous media. Phys. Rev. E 94(5), 053118 (2016)ADSCrossRefGoogle Scholar
  102. 102.
    Serpieri, R., Travascio, F.: Variational macroscopic two-phase poroelasticity. Derivation of general medium-independent equations and stress partitioning laws. In: Variational Continuum Multiphase Poroelasticity. Advanced Structured Materials, vol. 67. Springer, Singapore (2017)Google Scholar
  103. 103.
    Mühlich, U., Zybell, L., Kuna, M.: Estimation of material properties for linear elastic strain gradient effective media. Eur. J. Mech. A Solids 31(1), 117–130 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  104. 104.
    Zybell, L., Mühlich, U., Kuna, M.: Constitutive equations for porous plane-strain gradient elasticity obtained by homogenization. Arch. Appl. Mech. 79(4), 359–375 (2009)ADSCrossRefzbMATHGoogle Scholar
  105. 105.
    De Meo, D., Diyaroglu, C., Zhu, N., Oterkus, E., Siddiq, M.A.: Modelling of stress-corrosion cracking by using peridynamics. Int. J. Hydrogen Energy 41(15), 6593–6609 (2016)CrossRefGoogle Scholar
  106. 106.
    De Meo, D., Russo, L., Oterkus, E.: Modeling of the onset, propagation, and interaction of multiple cracks generated from corrosion pits by using peridynamics. J. Eng. Mater. Technol. 139(4), 041001 (2017)CrossRefGoogle Scholar
  107. 107.
    Ndanou, S., Favrie, N., Gavrilyuk, S.: Criterion of hyperbolicity in hyperelasticity in the case of the stored energy in separable form. J. Elast. 115(1), 1–25 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  108. 108.
    Ndanou, S., Favrie, N., Gavrilyuk, S.: Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation. J. Comput. Phys. 295, 523–555 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  109. 109.
    Gavrilyuk, S., Ndanou, S., Hank, S.: An example of a one-parameter family of rank-one convex stored energies for isotropic compressible solids. J. Elast. 124(1), 133–141 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  110. 110.
    Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech Res. Commun. 83, 47–52 (2017)CrossRefGoogle Scholar
  111. 111.
    Biglar, M., Gromada, M., Stachowicz, F., Trzepieciński, T.: Synthesis of barium titanate piezoelectric ceramics for multilayer actuators (mlas). Acta Mech. Autom. 11(4), 275–279 (2017)Google Scholar
  112. 112.
    dell’Isola, F., Madeo, A., Seppecher, P.: Cauchy tetrahedron argument applied to higher contact interactions. Arch. Ration. Mech. Anal. 219(3), 1305–1341 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  113. 113.
    dell’Isola, F., Seppecher, P., Della Corte, A.: The postulations á la d’alambert and á la cauchy for higher gradient continuum theories are equivalent: a review of existing results. In: Proceedings of the Royal Society of London A, vol. 471, pp. 20150415. The Royal Society (2015)Google Scholar
  114. 114.
    dell’Isola, F., Seppecher, F., Madeo, A.: How contact interactions may depend on the shape of cauchy cuts in nth gradient continua: approach, Äúà la d’alambert, Äú. Zeitschrift für angewandte Mathematik und Physik 63(6), 1119–1141 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  115. 115.
    dell’Isola, F., Seppecher, P., Madeo, A.: Beyond euler-cauchy continua: the structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. In: dell’Isola, F., Gavrilyuk, S. (eds.) Variational Models and Methods in Solid and Fluid Mechanics. CISM Courses and Lectures, vol. 535. Springer, Vienna (2011)Google Scholar
  116. 116.
    dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of piola, mindlin, sedov and toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  117. 117.
    Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech Anal. 1239(218), 1239–1262 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  118. 118.
    dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2015)CrossRefGoogle Scholar
  119. 119.
    Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of gabrio piola. Math. Mech. Solids 20(8), 887–928 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  120. 120.
    dell’Isola, F., Della Corte, A., Esposito, R., Russo, L.: Some cases of unrecognized transmission of scientific knowledge: from antiquity to gabrio piola’s peridynamics and generalized continuum theories. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol. 42. Springer, Cham (2016)Google Scholar
  121. 121.
    Turco, E., Golaszewski, M., Giorgio, I., Placidi, L.: Can a hencky-type model predict the mechanical behaviour of pantographic lattices? In: dell’Isola, F., Sofonea, M., Steigmann, D. (eds.) Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol. 69. Springer, Singapore (2017)Google Scholar
  122. 122.
    Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. In Proceedings of the Royal Society of London A, vol. 473, pp. 20170636. The Royal Society (2017)Google Scholar
  123. 123.
    Turco, E., Giorgio, I., Misra, A., Dell’ÄôIsola, F.: King post truss as a motif for internal structure of (meta) material with controlled elastic properties. Open. Sci. 4(10), 171153 (2017)Google Scholar
  124. 124.
    Abdoul-Anziz, H., Seppecher, P.: Strain gradient and generalized continua obtained by homogenizing frame lattice. hal-01672898 (2017)Google Scholar
  125. 125.
    Battista, A., Della Corte, A., Dell’Isola, F., Seppecher, P.: Large deformations of 1d microstructured systems modeled as generalized timoshenko beams. hal-01625160 (2017)Google Scholar
  126. 126.
    Lekszycki, T., Bucci, S., Del Vescovo, D., Turco, E., Rizzi, N.L.: A comparison between different approaches for modelling media with viscoelastic properties via optimization analyses. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 97(5), 515–531 (2017)MathSciNetCrossRefGoogle Scholar
  127. 127.
    Giorgio, I., Andreaus, U., Dell’ÄôIsola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech. Lett. 13, 141–147 (2017)CrossRefGoogle Scholar
  128. 128.
    Zhao, C.F., Yin, Z.Y., Misra, A., Hicher, P.Y.: Thermomechanical formulation for micromechanical elasto-plasticity in granular materials. Int. J. Solids Struct. 138, 64–75 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversità degli Studi dell’AquilaL’AquilaItaly
  2. 2.International Center M&MOCS Mathematics and Mechanics of Complex Systems, DICEAAUniversità degli Studi dell’AquilaL’AquilaItaly
  3. 3.Research Institute for MechanicsNational Research Lobachevsky State University of Nizhni NovgorodNizhny NovgorodRussia

Personalised recommendations