Continuum Mechanics and Thermodynamics

, Volume 30, Issue 5, pp 953–976 | Cite as

Modeling micromechanical measurements of depth-varying properties with scanning acoustic microscopy

  • Orestes Marangos
  • Anil MisraEmail author
Original Article


Scanning acoustic microscopy (SAM) has been applied to measure the near-surface elastic properties of materials. For many substrates, the near-surface property is not constant but varies with depth. In this paper, we aim to interpret the SAM data from such substrates by modeling the interaction of the focused ultrasonic field with a substrate having a near-surface graded layer. The focused ultrasonic field solutions were represented as spherical harmonic expansions while the substrate solutions were represented as plane wave expansions. The bridging of the two solutions was achieved through the decomposition of the ultrasonic pressure fields in their angular spectra. Parametric studies were performed, which showed that near-surface graded layers exhibit distinctive frequency dependence of their reflectance functions. This behavior is characteristic to the material property gradation profile as well as the extent of the property gradation. The developed model was used to explain the frequency-dependent reflection coefficients measured from an acid-etched dentin substrate. Based on the model calculations, the elastic property variations of the acid-etched dentin near-surface indicate that the topmost part of the etched layer is very soft (3–6 GPa) and transitions to the native dentin through a depth of 27 and 36 microns.


Acoustic microscopy Near-surface graded elasticity Reflectance function Focused ultrasonic field Frequency dependence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Katz, J.L., Meunier, A.: Scanning acoustic microscope studies of the elastic properties of osteons and osteon lamellae. J. Biomech. Eng. 115(4B), 543–548 (1993)CrossRefGoogle Scholar
  2. 2.
    Marangos, O., Misra, A., Spencer, P., Bohaty, B., Katz, J.L.: Physico-mechanical properties determination using microscale homotopic measurements: application to sound and caries-affected primary tooth dentin. Acta Biomater. 5(4), 1338–1348 (2009)CrossRefGoogle Scholar
  3. 3.
    Rupin, F., Saïed, A., Dalmas, D., Peyrin, F., Haupert, S., Raum, K., et al.: Assessment of microelastic properties of bone using scanning acoustic microscopy: a face-to-face comparison with nanoindentation. Jpn. J. Appl. Phys. 48(7S), 07GK1 (2009)Google Scholar
  4. 4.
    Lemons, R., Quate, C.: Acoustic microscope—scanning version. Appl. Phys. Lett. 24(4), 163–165 (1974)ADSCrossRefGoogle Scholar
  5. 5.
    Briggs, A., Kolosov, O.: Acoustic Microscopy. Oxford University Press, Oxford (2010)Google Scholar
  6. 6.
    Rosi, G., Placidi, L., Nguyen, V.-H., Naili, S.: Wave propagation across a finite heterogeneous interphase modeled as an interface with material properties. Mech. Res. Commun. 84, 43–48 (2017)CrossRefGoogle Scholar
  7. 7.
    Wieliczka, D.M., Kruger, M., Spencer, P.: Raman imaging of dental adhesive diffusion. Appl. Spectrosc. 51(11), 1593–1596 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Marangos, O., Misra, A., Spencer, P., Katz, J.L.: Scanning acoustic microscopy investigation of frequency-dependent reflectance of acid-etched human dentin using homotopic measurements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(3), 585–595 (2011)CrossRefGoogle Scholar
  9. 9.
    Feng, F., Mal, A., Kabo, M., Wang, J.C., Bar-Cohen, Y.: The mechanical and thermal effects of focused ultrasound in a model biological material. J. Acoust. Soc. Am. 117(4), 2347–2355 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Sapozhnikov, O.A., Bailey, M.R.: Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. J. Acoust. Soc. Am. 133(2), 661–676 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Maev, R.G.: Acoustic Microscopy: Fundamentals and Applications. Wiley, New York (2008)CrossRefGoogle Scholar
  12. 12.
    Atalar, A.: An angular-spectrum approach to contrast in reflection acoustic microscopy. J. Appl. Phys. 49(10), 5130–5139 (1978)ADSCrossRefGoogle Scholar
  13. 13.
    Wickramasinghe, H.: Contrast and imaging performance in the scanning acoustic microscope. J. Appl. Phys. 50(2), 664–672 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    Bertoni, H.L.: Ray-optical evaluation of V(z) in the reflection acoustic microscope. IEEE Trans. Sonics Ultrason. 31(2), 105–116 (1984)CrossRefGoogle Scholar
  15. 15.
    Winkler, J., Davies, J.: Accurate field analysis of the propagation of elastic waves through an acoustic microscope, part I: theory. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(6), 644–656 (1986)CrossRefGoogle Scholar
  16. 16.
    Winkler, J., Davies, J.: Accurate field analysis of the propagation of elastic waves through an acoustic microscope, part II: results. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(6), 657–668 (1986)CrossRefGoogle Scholar
  17. 17.
    Liu, G., Achenbach, J., Kim, J., Li, Z.: A combined finite element method/boundary element method technique for V(z) curves of anisotropic-layer/substrate configurations. J. Acoust. Soc. Am. 92(5), 2734–2740 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    Kundu, T., Lee, J.-P., Blase, C., Bereiter-Hahn, J.: Acoustic microscope lens modeling and its application in determining biological cell properties from single-and multi-layered cell models. J. Acoust. Soc. Am. 120(3), 1646–1654 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Nagy, P.B., Adler, L.: Acoustic material signature from frequency analysis. J. Appl. Phys. 67(8), 3876–3878 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    Li, Z., Achenbach, J., Kim, J.: Effect of surface discontinuities on V(z) and V(z, x) for the line-focus acoustic microscope. Wave Motion 14(2), 187–203 (1991)CrossRefGoogle Scholar
  21. 21.
    Rebinsky, D.A., Harris, J.G. (eds.): An asymptotic calculation of the acoustic signature of a cracked surface for the line focus scanning acoustic microscope. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences; The Royal Society (1992)Google Scholar
  22. 22.
    Rebinsky, D.A., Harris, J.G. (eds.): The acoustic signature for a surface-breaking crack produced by a point focus microscope. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences: The Royal Society (1992)Google Scholar
  23. 23.
    Sommerfeld, A.: Lectures on Theoretical Physics: Optics. Academic Press, New York (1954)zbMATHGoogle Scholar
  24. 24.
    Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier, Amsterdam (2013)zbMATHGoogle Scholar
  25. 25.
    Rayleigh, L.: The Theory of Sound, Vols. I and II. Dover Publications, New York (1945)Google Scholar
  26. 26.
    Achenbach, J.: Wave Propagation in Elastic Solids. Elsevier, Amsterdam (2012)zbMATHGoogle Scholar
  27. 27.
    Baker, B.B., Copson, E.T.: The Mathematical Theory of Huygens’ Principle. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  28. 28.
    Ardebili, V.S., Sinclair, A. (eds.): A new angular spectrum approach for modelling the acoustic microscope response with high attenuation coupling fluids. In: Proceedings of Symposium on Ultrasonics, 1995. IEEE (1995)Google Scholar
  29. 29.
    Chou, C.-H., Kino, G.: The evaluation of V(z) in a type II reflection microscope. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(3), 341–345 (1987)CrossRefGoogle Scholar
  30. 30.
    Liang, K.K., Kino, G.S., Khuri-Yakub, B.T.: Material characterization by the inversion of V(z). IEEE Trans Sonics Ultrason. 32(2), 213–224 (1985)CrossRefGoogle Scholar
  31. 31.
    Lucas, B.G., Muir, T.G.: The field of a focusing source. J. Acoust. Soc. Am. 72(4), 1289–1296 (1982)ADSCrossRefGoogle Scholar
  32. 32.
    Coulouvrat, F.: Continuous field radiated by a geometrically focused transducer: numerical investigation and comparison with an approximate model. J. Acoust. Soc. Am. 94(3), 1663–1675 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    Keller, J.B., Givoli, D.: Exact non-reflecting boundary conditions. J. Comput. Phys. 82(1), 172–192 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Williams, E.G.: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography. Academic Press, New York (1999)Google Scholar
  35. 35.
    Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists International Student Edition. Academic Press, New York (2005)zbMATHGoogle Scholar
  36. 36.
    Goodman, J.W.: Introduction to Fourier Optics. McGaw-Hill Physical and Quantum Electronics Series. McGraw-Hill Book Co., New York (1968)Google Scholar
  37. 37.
    Orofino, D.P., Pedersen, P.C.: Efficient angular spectrum decomposition of acoustic sources. I. Theory. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(3), 238–249 (1993)CrossRefGoogle Scholar
  38. 38.
    Stamnes, J.J.: Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves. Routledge, London (2017)zbMATHGoogle Scholar
  39. 39.
    Zinin, P., Lefeuvre, O., Briggs, A., Zeller, B.D., Cawley, P., Kinloch, A., et al.: Determination of density and elastic constants of a thin phosphoric acid-anodized oxide film by acoustic microscopy. J. Acoust. Soc. Am. 106(5), 2560–2567 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    Mal, A.: Elastic waves from localized sources in composite laminates. Int. J. Solids Struct. 39(21), 5481–5494 (2002)CrossRefzbMATHGoogle Scholar
  41. 41.
    Robins, A.J.: Reflection of plane acoustic waves from a layer of varying density. J. Acoust. Soc. Am. 87(4), 1546–1552 (1990)ADSCrossRefGoogle Scholar
  42. 42.
    Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical simulation of two-dimensional wave propagation in functionally graded materials. Eur. J. Mech. A Solids 22(2), 257–265 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Haïat, G., Naili, S., Grimal, Q., Talmant, M., Desceliers, C., Soize, C.: Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission. J. Acoust. Soc. Am. 125(6), 4043–4052 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Vollmann, J., Profunser, D.M., Bryner, J., Dual, J.: Elastodynamic wave propagation in graded materials: simulations, experiments, phenomena, and applications. Ultrasonics 44, e1215–e1221 (2006)CrossRefGoogle Scholar
  45. 45.
    Zhang, Z.J., Paulino, G.H.: Wave propagation and dynamic analysis of smoothly graded heterogeneous continua using graded finite elements. Int. J. Solids Struct. 44(11), 3601–3626 (2007)CrossRefzbMATHGoogle Scholar
  46. 46.
    Robins, A.J.: Plane-wave reflection from a solid layer with nonuniform density, sound speed, and shear speed. J. Acoust. Soc. Am. 103(3), 1337–1345 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    Baron, C., Naili, S.: Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization. J. Acoust. Soc. Am. 127(3), 1307–1317 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Haskell, N.A.: The dispersion of surface waves on multilayered media. Bull. Seismol. Soc. Am. 43(1), 17–34 (1953)MathSciNetGoogle Scholar
  49. 49.
    Thomson, W.T.: Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 21(2), 89–93 (1950)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Wang, L., Rokhlin, S.: Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium. J. Mech. Phys. Solids 52(11), 2473–2506 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Kausel, E., Roësset, J.M.: Stiffness matrices for layered soils. Bull. Seismol. Soc. Am. 71(6), 1743–1761 (1981)Google Scholar
  52. 52.
    Rokhlin, S., Wang, L.: Stable recursive algorithm for elastic wave propagation in layered anisotropic media: stiffness matrix method. J. Acoust. Soc. Am. 112(3), 822–834 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    Wang, L., Rokhlin, S.: Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media. Ultrasonics 39(6), 413–424 (2001)CrossRefGoogle Scholar
  54. 54.
    Kundu, T., Mal, A., Weglein, R.: Calculation of the acoustic material signature of a layered solid. J. Acoust. Soc. Am. 77(2), 353–361 (1985)ADSCrossRefGoogle Scholar
  55. 55.
    Kinney, J., Gladden, J., Marshall, G., Marshall, S., So, J.H., Maynard, J.: Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. J. Biomech. 37(4), 437–441 (2004)CrossRefGoogle Scholar
  56. 56.
    Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Eremeyev, V.A., Rosi, G., Naili, S.: Surface/interfacial anti-plane waves in solids with surface energy. Mech. Res. Commun. 74, 8–13 (2016)CrossRefGoogle Scholar
  58. 58.
    dell’Isola, F., Madeo, A., Placidi, L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. ZAMM J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik 92(1), 52–71 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Rosi, G., Madeo, A., Guyader, J.-L.: Switch between fast and slow Biot compression waves induced by "second gradient microstructure" at material discontinuity surfaces in porous media. Int. J. Solids Struct. 50(10), 1721–1746 (2013)CrossRefGoogle Scholar
  61. 61.
    Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28(1–2), 215 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Placidi, L., Dell’Isola, F., Ianiro, N., Sciarra, G.: Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A Solids 27(4), 582–606 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Rosi, G., Placidi, L., dell’Isola, F.: "Fast" and "slow" pressure waves electrically induced by nonlinear coupling in biot-type porous medium saturated by a nematic liquid crystal. Zeitschrift für angewandte Mathematik und Physik 68(2), 51 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil Engineering and GeomaticsCyprus University of TechnologyLimassolCyprus
  2. 2.Civil, Environmental and Architectural Engineering DepartmentUniversity of KansasLawrenceUSA
  3. 3.Bioengineering Research Center (BERC)University of KansasLawrenceUSA
  4. 4.Civil, Mechanical Engineering DepartmentThe University of KansasLawrenceUSA

Personalised recommendations