Continuum Mechanics and Thermodynamics

, Volume 31, Issue 1, pp 47–70 | Cite as

Asymptotic derivation of nonlocal plate models from three-dimensional stress gradient elasticity

  • F. Hache
  • N. ChallamelEmail author
  • I. Elishakoff
Original Article


This paper deals with the asymptotic derivation of thin and thick nonlocal plate models at different orders from three-dimensional stress gradient elasticity, through the power series expansions of the displacements in the thickness ratio of the plate. Three nonlocal asymptotic approaches are considered: a partial nonlocality following the thickness of the plate, a partial nonlocality following the two directions of the plates and a full nonlocality (following all the directions). The three asymptotic approaches lead at the zeroth order to a nonlocal Kirchhoff–Love plate model, but differ in the expression of the length scale. The nonlocal asymptotic models coincide at this order with the stress gradient Kirchhoff–Love plate model, only when the nonlocality is following the two directions of the plate and expressed through a nabla operator. This asymptotic model also yields the nonlocal truncated Uflyand–Mindlin plate model at the second order. However, the two other asymptotic models lead to equations that differ from the current existing nonlocal engineering models (stress gradient engineering plate models). The natural frequencies for an all-edges simply supported plate are obtained for each model. It shows that the models provide similar results for low orders of frequencies or small thickness ratio or nonlocal lengths. Moreover, only the asymptotic model with a partial nonlocality following the two directions of the plates is consistent with a stress gradient plate model, whatever the geometry of the plate.


Kirchhoff–Love Uflyand–Mindlin Asymptotic derivation Nonlocal theories 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Zhao, Z., Qiu, J.: Graphene: synthesis, properties and applications. In: Gogotsi, Y., Gogotsi, Y. (eds.) Carbon Nanomaterials, 2nd edn, pp. 1–46. CRC Press, Boca Raton (2014)Google Scholar
  3. 3.
    Choi, W., Lee, J.-W.: Graphene, Synthesis and Applications. CRC Press, Boca Raton (2012)Google Scholar
  4. 4.
    Moon, J., Gaskill, D.: Graphene: its fundamentals to future application. IEEE Trans. Microw. Theory Tech. 59, 2702–2708 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    Maugin, G.A.: Continuum Mechanics Through the Twentieth Century: A Concise Historical Perspective. Springer, Dordrecht (2013)CrossRefzbMATHGoogle Scholar
  9. 9.
    Ciarlet, P., Trabucho, L., Viano, J.M.: Asymptotic Methods for Elastic Structures. Walter de Gruyter, Berlin (1995)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hodges, D.H.: Nonlinear Composite Beam Theory. AIAA, Washington (2006)CrossRefGoogle Scholar
  11. 11.
    Chebakov, R., Kaplunov, J., Rogerson, G.A.: A non-local asymptotic theory for thin elastic plates. Proc. R. Soc. A 473, 20170249 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goldenveizer, A.L., Kaplunov, J.D., Nolde, E.V.: Asymptotic analysis and refinement of Timoshenko–Reisner-type theories of plates and shells. Trans. Acad. Sci. USSR Mekhanika Tverd. Tela 25, 126–139 (1990)Google Scholar
  13. 13.
    Elishakoff, I., Hache, F., Challamel, N.: Variational derivation of governing differential equations for truncated version of Bresse–Timoshenko beams. J. Sound Vib. (2017) (in press) Google Scholar
  14. 14.
    Elishakoff, I., Hache, F., Challamel, N.: Vibrations of asymptotically and variationally based Uflyand–Mindlin plate models. Int. J. Eng. Sci. 116, 58–73 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The Complete Works of Gabrio Piola: Volume I Commented English Translation Advanced Structured Materials. Springer, Berlin (2014)zbMATHGoogle Scholar
  16. 16.
    Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20, 887–928 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A 473, 20170636 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472, 20150790 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Liew, K.M., Xiang, Y., Kitipornchai, S., Wang, C.M.: Vibration of Mindlin Plates: Programming the p-Version Ritz Method. Elsevier, Oxford (1998)zbMATHGoogle Scholar
  20. 20.
    Uflyand, Y.S.: The propagation of waves in the transverse vibrations of bars and plates. Prikl. Math. Mech. 12, 287–461 (1948)MathSciNetGoogle Scholar
  21. 21.
    Mindlin, R.D.: Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18, 31–38 (1951)zbMATHGoogle Scholar
  22. 22.
    Elishakoff, I.: Generalization of the Bolotin’s dynamic edge-effect method for vibration analysis of Mindlin plates. In: Cuschieri, J.M., Glegg, S.A.L., Yeager, D.M. (eds.) Proceedings of the 1994 National Conference on Noise Control Engineering, pp. 911–916. NOISE-CON 94, Fort Lauderdale (1994)Google Scholar
  23. 23.
    Hache, F., Elishakoff, I., Challamel, N.: Free vibration analysis of plates taking into account rotary inertia and shear deformation via three alternative theories: a Lévy-type solution. Acta Mech. 228, 3633–3655 (2017)Google Scholar
  24. 24.
    Hutchinson, J.R.: Vibrations of thick free circular plates, exact versus approximate solutions. J. Appl. Mech. 51, 581–585 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    Stephen, N.G.: Mindlin plate theory: best shear coefficient and higher spectra validity. J. Sound Vib. 202, 539–553 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    Challamel, N., Hache, F., Elishakoff, I., Wang, C.M.: Buckling and vibrations of microstructured rectangular plates considering phenomenological and lattice-based continuum models. Compos. Struct. 149, 145–156 (2016)CrossRefGoogle Scholar
  27. 27.
    Hache, F., Challamel, N., Elishakoff, I., Wang, C.M.: Comparison of nonlocal continualization schemes for lattice beams and plates. Arch. Appl. Mech. 87, 1105–1138 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Lu, P., Zhang, P.Q., Lee, H.P., Wang, C.M., Reddy, J.N.: Non-local elastic plate theories. Proc. R. Soc. A 463, 3225–3240 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Pradhan, S.C., Phadikar, J.K.: Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206–223 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Aghababaei, R., Reddy, J.N.: Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J. Sound Vib. 326, 277–289 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)CrossRefzbMATHGoogle Scholar
  32. 32.
    Elishakoff, I., Soret, C.: A consistent set of nonlocal Bresse–Timoshenko equations for nanobeams with surface effects. J. Appl. Mech. 80, 061001 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Lu, P., Lee, H.P., Lu, C., Zhang, P.Q.: Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct. 44, 5289–5300 (2007)CrossRefzbMATHGoogle Scholar
  34. 34.
    Lei, X.W., Natsuki, T., Shi, J., Ni, Q.: Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos. B 43, 64–69 (2012)CrossRefGoogle Scholar
  35. 35.
    Thai, H.T.: A nonlocal beam theory for bending, buckling and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)CrossRefGoogle Scholar
  37. 37.
    Lee, H.L., Chang, W.J.: Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. J. Appl. Phys. 108, 093503 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Wang, C.M., Zhang, Y.Y., He, X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18, 105401 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    Ebrahimi, F., Nasirzadeh, P.: A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method. J. Theor. Appl. Mech. 53, 1041–1052 (2015)CrossRefGoogle Scholar
  40. 40.
    Wang, C.M., Zhang, Y.Y., Ramesh, S.S., Kitipornchai, S.: Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D Appl. Phys. 39, 3904–3909 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Hu, Y.G., Liew, K.M., Wang, Q.: Modeling of vibrations of carbon nanotubes. Procedia Eng. 31, 343–347 (2012)CrossRefGoogle Scholar
  42. 42.
    Wang, K.F., Wang, B.L.: Vibration of nanoscale plates with surface energy via nonlocal elasticity. Phys. E Low Dimens. Syst. Nanostruct. 44, 448–453 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Setoodeh, A.R., Malekzadeh, P., Vosoughi, A.R.: Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 226(7), 1896–1906 (2012)CrossRefGoogle Scholar
  44. 44.
    Arash, B., Wang, Q.: Vibration of single-and double-layered graphene sheets. J. Nanotechnol. Eng. Med. 2, 011012 (2011)CrossRefGoogle Scholar
  45. 45.
    Ansari, R., Sahmani, S., Arash, B.: Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett. A 375, 53–62 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Ansari, R., Arash, B., Rouhi, H.: Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Compos. Struct. 93, 2419–2429 (2011)CrossRefGoogle Scholar
  47. 47.
    Adali, S.: Variational principles and natural boundary conditions for multilayered orthotropic graphene sheets undergoing vibrations and based on nonlocal elastic theory. JTAM 49, 621–639 (2011)Google Scholar
  48. 48.
    Adali, S.: Variational principles for nonlocal continuum model of orthotropic graphene sheets embedded in an elastic medium. Acta Math. Sci. 32, 325–338 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Jomehzadeh, E., Saidi, A.R.: A Levy type solution for free vibration analysis of a nano-plate considering the small scale effect. In: Baddour, N. (ed.) Recent Advances in Vibration Analysis. Intech, Rijeka (2011)Google Scholar
  50. 50.
    Wang, K.F., Wang, B.L.: Combining effects of surface energy and non-local elasticity on the buckling of nanoplates. Micro Nano Lett. 6, 941–943 (2011)CrossRefGoogle Scholar
  51. 51.
    Lu, P., Zhang, P.Q., Lee, H.P., Wang, C.M., Reddy, J.N.: Non-local elastic plate theories. Proc. R. Soc. Lond. Ser. A 463, 3225–3240 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Aksencer, T., Aydogdu, M.: Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory. Phys. E Low Dimens. Syst. Nanostruct. 43, 954–959 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.FRE CNRS 3744 IRDL, Centre de RechercheUniversité de Bretagne Sud, University of South BrittanyLorient CedexFrance
  2. 2.Department of Ocean and Mechanical EngineeringFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations