Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermodynamic potential of free energy for thermo-elastic-plastic body

  • 619 Accesses

  • 1 Citations

Abstract

The procedure of derivation of thermodynamic potential of free energy (Helmholtz free energy) for a thermo-elastic-plastic body is presented. This procedure concerns a special thermodynamic model of a thermo-elastic-plastic body with isotropic hardening characteristics. The classical thermodynamics of irreversible processes for material characterized by macroscopic internal parameters is used in the derivation. Thermodynamic potential of free energy may be used for practical determination of the level of stored energy accumulated in material during plastic processing applied, e.g., for industry components and other machinery parts received by plastic deformation processing. In this paper the stored energy for the simple stretching of austenitic steel will be presented.

Change history

  • 18 December 2017

    Unfortunately, the original article was online published with error in equations, and the same is corrected here.

References

  1. 1.

    Raniecki, B., Sawczuk, A.: Thermal effects in plasticity. Part I: coupled theory. Zeitschrift für Angewandte Mathematik und Mechanik - ZAMM 55(6), 333–341 (1975)

  2. 2.

    Raniecki, B.: An Introduction to the Concept of Applied Thermoplasticity, pp. 1–94. Royal Institute of Technology, Stockholm (1976)

  3. 3.

    Raniecki B.: Problems of applied thermoplasticity, Habilitation thesis, IFTR Reports, 29/1977, Warszawa, 1–120 (1977) (in Polish)

  4. 4.

    Śloderbach, Z., Rechul, Z.: A thermodynamic approach to the stored energy concept. J. Tech. Phys. 47(2), 83–102 (2006)

  5. 5.

    Śloderbach, Z.: Closed set of the uniqueness conditions and bifurcation criteria in generalized coupled thermodynamics for small deformations. Contin. Mech. Thermodyn. 28(3), 633–654 (2016)

  6. 6.

    Śloderbach, Z.: Generalized coupled thermoplasticity. Part I–Fundamental equations and identities. Arch. Mech. 35(3), 337–349 (1983)

  7. 7.

    Śloderbach Z.: Stored energy in processes of plastic strains. Publishing house of the Opole Technical University, ISBN 978-83-62736-37-9, 1–180 (2011) (in Polish)

  8. 8.

    Śloderbach, Z.: Closed system of coupling effects in generalized thermo-elastoplasticity. Int. J. Appl. Mech. Eng. 21(2), 461–483 (2016)

  9. 9.

    Śloderbach Z.: Thermomechanical problems of deformable bodies for small deformations. Publishing Houseof Opole University of Technology, ISBN 978-8364056-54-3, 1-272 (2014) (in Polish)

  10. 10.

    Śloderbach, Z., Pająk, J.: Generalized coupled thermoplasticity taking into account large strains: Part I. Conditions of uniqueness of the solution of boundary-value problem and bifurcation criteria. Math. Mech. Solids 15(3), 308–327 (2010)

  11. 11.

    Adam, C.M., Wolfenden, A.: The influence of microstructure on the energy stored in deformed aluminium and aluminium alloys. Acta Metall. 26, 1307–1315 (1978)

  12. 12.

    Bever, M.B., Holt, D.L., Titchener, A.L.: The Stored Energy of Cold Work, Progress in Materials Science, vol. 17. Pergamon Press, Oxford (1973)

  13. 13.

    Bolszanina N.A., Panin W.E.: Stored energy of cold work (in Russian). In the book: “Investigations on physics of solids”, Izdatielstvo AN-SSSR, Moscow, 194–233 (1957)

  14. 14.

    Chrysochoos A. et Maisonneuve O.: Bilan énergétique en élastoplasticité des grandes déformations, C. R. Academie Science, T. 300, Serie II, 20, Paris, 985–990 (1985)

  15. 15.

    Chrysochoos A.: Bilan énergétique en élastoplasticité grandes déformations. Journal de Mecanique Theorique et Appliquee, 4, 5, 1985, 589–614 (1985)

  16. 16.

    Chrysochoos, A., Maisonneeuve, O., Martin, G., Caumon, H., Chezeaux, J.C.: Plastic and dissipated work and stored energy. Nucl. Eng. Des. 114, 323–333 (1989)

  17. 17.

    Chrysochoos, A., Martin, G.: Tensile test microcalorimetry for thermomechanical behaviour law analysis. Mater. Sci. Eng. A 108, 25–32 (1989)

  18. 18.

    Chrysochoos, A., Belmanjoub, F.: Thermographic analysis of thermomechanical couplings. Arch. Mech. 44(1), 55–68 (1992)

  19. 19.

    Clarebrough L.M., Hargreaves M.E., Mitchel D., West G.W.: The determination of the energy stored in a metal during plastic deformation. In: Proceedings of the Royal Society A, vol. 215, London, pp. 215–307 (1952)

  20. 20.

    Gadaj S.P., Gałkowska E., Kaczmarek J., Oliferuk W.: Determination of energy stored in metals in tensile tests. Institute of Fundamental Technological Research Reports (IFTR Reports), 36/81, Warsaw, 1–24 (1981) (in Polish)

  21. 21.

    Oliferuk, W., Gadaj, S.P., Grabski, M.W.: Energy storage during the tensile deformation of armco iron and austenitic steel. Mater. Sci. Eng. A 70, 31–141 (1985)

  22. 22.

    Oliferuk, W., Świątnicki, W.A., Grabski, M.W.: Rate of storage and microstructure evolution during the tensile deformation of austenitic steel. Mater. Sci. Eng. A 161, 55–63 (1993)

  23. 23.

    Oliferuk, W., Świątnicki, W.A., Grabski, M.W.: Effect of the grain size on the rate of energy storage during tensile deformation of an austenitic steel. Mater. Sci. Eng. A 197, 49–58 (1995)

  24. 24.

    Oliferuk, W., Korbel, A., Grabski, M.W.: Model of deformation and the rate of energy storage during uniaxial tensile deformation of austenitic steel. Mater. Sci. Eng. A 220, 123–128 (1996)

  25. 25.

    Oliferuk W.: Energy storage process and its relation to material structure in austenitic steel tested in simple tension. Habitation Thesis, Institute of Fundamental Technological Research Reports (IFTR Reports), 11/1997, Warsaw, 1–108 (1997) (in Polish)

  26. 26.

    Rosakis, P., et al.: A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J. Mech. Phys. Solids 48, 581–607 (2000)

  27. 27.

    Rousellier, G.: Dissipation in porous metal plasticity and ductile fracture. J. Mech. Phys. Solids 48, 1727–1746 (2001)

  28. 28.

    Soós, E., Badea, L.: A new theory of the stored energy in elasto-plasticity and the torsion test. Eur. J. Mech. A/Solids 16(3), 467–500 (1997)

  29. 29.

    Szczepiński, W.: The stored energy in metals and concept of residual microstresses in plasticity. Arch. Mech. 53(6), 615–629 (2001)

  30. 30.

    Śloderbach, Z., Pająk, J.: Stored energy of plastic deformations in tube bending processes. Int. J. Appl. Mech. Eng. 18(1), 235–248 (2013)

  31. 31.

    Taylor G.I., Quinney H.: The latent energy remaining in metal after cold working. In: Proceedings of the Royal Society of London, Vol.  143, London, pp. 307–326 (1934)

  32. 32.

    Williams, R.O.: Stored energy and release kinetics in lead, aluminium, silver, nickel, iron and zirconium after deformation. Trans. Metall. Soc. AIME 224, 719–726 (1962)

  33. 33.

    Buchdahl, H.A.: The Concepts of Classical Thermodynamics. Cambridge Univ Press, Cambridge (1966)

  34. 34.

    Callen, H.B.: Thermodynamics. Wiley, Hoboken (1960)

  35. 35.

    Guminski, K.: Thermodynamics of Irreversible Processes. PWN, Warsaw (1962). (in Polish)

  36. 36.

    Perzyna, P.: Thermodynamics of Inelastic Materials. PWN, Warsaw (1978). (in Polish)

  37. 37.

    Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

  38. 38.

    Marotti de Sciarra, F., Salerno, M.: On thermodynamic functions in thermoelasticity without energy dissipation. Eur. J. Mech. A/Solids 46, 84–95 (2014)

  39. 39.

    Marotti de Sciarra, F.: Variational formulations and a consistent finite-element procedure for a class of nonlocal elastic continua. Int. J. Solids Struct. 45, 4184–4202 (2008)

  40. 40.

    de Sciarra, F.M.: Variational formulations, convergence and stability properties in nonlocal elastoplasticity. Int. J. Solids Struct. 45, 2322–2354 (2008)

  41. 41.

    Dzidowski E.S.: Evaluation of the effect the manufacturing methods have on properties of materials used in power plant components. In: Proceedings of the I Conference PIRE’98, ISBN 83-909539-5-1, OBR-GRE Wrocław, Kudowa Zdrój, 51–56 (1998) (in Polish)

  42. 42.

    Dzidowski E.S., Strauchold Sz.: Effect of pipe-bending technology on power pipeline systems reliability. Scientific Booklets of the Opole Technical University, Series of the Electrician, Z. 46, Opole, 119–125 (1998) (in Polish)

  43. 43.

    Lehmann Th.: Gro\(\beta \)e elasto-plastische Formänderungen, Ruhr-Universität Bochum, Mittelungen aus dem Institut für Mechanik, 1 (1976)

  44. 44.

    Cahn, R.W., Haasen, P.: (Edit) Physical Metallurgy. North Holland, Amsterdam (1983)

  45. 45.

    Ziaja J.: X-ray methods for determining structural characteristics of polycrystalline solids. Monographs of Institiute of Material Science and Applied Mechanics, 54, 23, Wrocław University of Technology (1994) (in Polish)

  46. 46.

    Cottrell, A.H.: The Mechanical Properties of Matter. University of Cambridge, Willey, New York (1964)

  47. 47.

    Chaboche J.L.: Sur l’utilisation des variables d’etat interne pour la descriptiondu comportement viscoplastique et de la rupture par endommagement, in: French-Polish Symposium - Non linear Problems in Mechanics, PWN, Warsaw, 137-159 (1980)

Download references

Author information

Correspondence to Z. Śloderbach.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00161-017-0614-6.

Communicated by Andreas Öchsner.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Śloderbach, Z., Pająk, J. Thermodynamic potential of free energy for thermo-elastic-plastic body. Continuum Mech. Thermodyn. 30, 221–232 (2018). https://doi.org/10.1007/s00161-017-0597-3

Download citation

Keywords

  • Free energy
  • Thermo-elastic-plastic body
  • Enthalpy
  • Exergy
  • Stored energy of plastic deformations
  • Mechanical energy dissipation
  • Thermodynamic reference state