Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Asymptotics and numerical efficiency of the Allen–Cahn model for phase interfaces with low energy in solids


We study how the propagation speed of interfaces in the Allen–Cahn phase field model for phase transformations in solids consisting of the elasticity equations and the Allen–Cahn equation depends on two parameters of the model. The two parameters control the interface energy and the interface width, but change also the interface speed. To this end, we derive an asymptotic expansion of second order for the interface speed, called the kinetic relation, and prove that it is uniformly valid in both parameters. As a consequence, we show that the model error is proportional to the interface width divided by the interface energy. We conclude that simulations of interfaces with low interface energy based on this model require a very small interface width, implying a large numerical effort. Effective simulations thus need adaptive mesh refinement or other advanced techniques.

This is a preview of subscription content, log in to check access.


  1. 1.

    Abels, H., Schaubeck, S.: Sharp interface limit for the Cahn–Larché system. Asymptot. Anal. 91(3–4), 283–340 (2015)

  2. 2.

    Abeyaratne, R., Knowles, J.K.: On the driving traction acting on a surface of strain discontinuity in a continuum. J. Mech. Phys. Solids 38(3), 345–360 (1990)

  3. 3.

    Alber, H.-D.: Evolving microstructure and homogenization. Continum. Mech. Thermodyn. 12, 235–286 (2000)

  4. 4.

    Alber, H.-D.: Evolution of phase interfaces by configurational forces: a phase field model. Thermodynamische Materialtheorien, Oberwolfach 12.2.2004–18.12.2004. Oberwolfach Rep. 1(4), 2981–2985 (2004)

  5. 5.

    Alber, H.-D., Zhu, P.: Solutions to a model with nonuniformly parabolic terms for phase evolution driven by configurational forces. SIAM J. Appl. Math. 66(2), 680–699 (2006)

  6. 6.

    Alber, H.-D., Zhu, P.: Evolution of phase boundaries by configurational forces. Arch. Ration. Mech. Anal. 185(2), 235–286 (2007)

  7. 7.

    Alber, H.-D., Zhu, P.: Interface motion by interface diffusion driven by bulk energy: justification of a diffusive interface model. Contin. Mech. Thermodyn. 23(2), 139–176 (2011)

  8. 8.

    Alber, H.-D., Zhu, P.: Comparison of a rapidely converging phase field model for interfaces in solids with the Allen–Cahn model. J. Elast. 111(2), 153–221 (2013)

  9. 9.

    Alber, H.-D.: Asymptotics and numerical efficiency of the Allen–Cahn model for phase interfaces with low energy in solids. Version containing full proofs. arXiv:1505.05442 [math-ph]

  10. 10.

    Almgren, R.F.: Second-order phase field asymptotics for unequal conductivities. SIAM J. Appl. Math. 59(6), 2086–2107 (1999)

  11. 11.

    Alikakos, N.D., Bates, P.W., Chen, X.: Convergence of the Cahn–Hilliard equation to the Hele-Shaw model. Arch. Ration. Mech. Anal. 128, 165–205 (1994)

  12. 12.

    Bhattachary, K.: Microstructure of Martensite. Oxford University Press, Oxford (2003)

  13. 13.

    Buratti, G., Huo, Y., Müller, I.: Eshelby tensor as a tensor of free enthalpy. J. Elast. 72, 3142 (2003)

  14. 14.

    Caginalp, G.: The role of microscopic anisotropy in the macroscopic behavior of a phase boundary. Ann. Phys. 172, 136–155 (1986)

  15. 15.

    Caginalp, G., Chen, X.: Convergence of the phase field model to its sharp interface limits. Eur. J. Appl. Math. 9, 417–445, 795–801 (1998)

  16. 16.

    Carlen, E.A., Carvalho, M.C., Orlandi, E.: Approximate solutions of the Cahn–Hilliard equation via corrections to the Mullins–Sekerka motion. Arch. Ration. Mech. Anal. 178(1), 1–55 (2005)

  17. 17.

    Chen, X.: Spectrums for the Allen–Cahn, Cahn–Hilliard, and phase-field equations for generic interface. Comm. Partial Diff. Eqns. 19, 1371–1395 (1994)

  18. 18.

    Chen, X., Caginalp, G., Eck, Ch.: A rapidely converging phase field model. Discrete Contin. Dyn. Syst. 15(4), 1017–1034 (2006)

  19. 19.

    Chen, X., Hong, J., Yi, F.: Existence, uniqueness, and regularity of classical solutions of the Mullins–Sekerka problem. Comm. Partial Differ. Equ. 21, 1705–1727 (1996)

  20. 20.

    de Mottoni, P., Schatzman, M.: Geometrical evolution of developed interfaces. Trans. Am. Math. Soc. 347, 1533–1589 (1995)

  21. 21.

    Escher, J., Simonett, G.: On Hele–Shaw models with surface tension. Math. Res. Lett. 3(4), 467–474 (1996)

  22. 22.

    Escher, J., Simonett, G.: Classical solutions for Hele–Shaw models with surface tension. Adv. Differ. Equ. 2(4), 619–642 (1997)

  23. 23.

    Escher, J., Simonett, G.: A center manifold analysis for the Mullins–Sekerka model. J. Differ. Equ. 143(2), 267–292 (1998)

  24. 24.

    Fife, P., Penrose, O.: Interfacial dynamics for thermodynamically consistent phase field models with nonconserved order parameter. Electron. J. Differ. Equ. 1, 1–49 (1995)

  25. 25.

    Fried, E., Gurtin, M.: Dynamic solid–solid transitions with phase characterized by an order parameter. Phys. D 72, 287–308 (1994)

  26. 26.

    Garcke, H., Stinner, B.: Second order phase field asymptotics for multi-component systems. Interfaces Free Bound 8(2), 131–157 (2006)

  27. 27.

    Karma, A., Rappel, W.-J.: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323–4349 (1998)

  28. 28.

    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

  29. 29.

    Luckhaus, S.: Solutions for the two-phase Stefan problem with the Gibbs–Thomson law for the melting temperature. Eur. J. Appl. Math. 1(2), 101–111 (1990)

  30. 30.

    Schrade, D., Mueller, R., Xu, B.X., Gross, D.: Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput. Methods Appl. Eng. 196, 4365–4374 (2007)

  31. 31.

    Xu, B.-X., Schrade, D., Müller, R., Gross, D., Granzow, T., Rödel, J.: Phase field simulation and experimental investigation of the electro-mechanical behavior of ferroelectrics. Z. Angw. Mat. Mech. 90(78), 623–632 (2010)

  32. 32.

    Zhang, W., Bhattacharya, K.: A computational model of ferroelectric domains, part I: model formulation and domain switching. Acta Mater. 53, 182–198 (2005)

  33. 33.

    Zuo, Y., Genenko, Y.A., Klein, A., Stein, P., Xu, B.: Domain wall stability in ferroelectrics with space charges. J. Appl. Phys. 115, 084110 (2014)

Download references

Author information

Correspondence to Hans-Dieter Alber.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alber, H. Asymptotics and numerical efficiency of the Allen–Cahn model for phase interfaces with low energy in solids. Continuum Mech. Thermodyn. 29, 757–803 (2017).

Download citation


  • Allen–Cahn phase field model for solids
  • Asymptotic expansion
  • Propagation speed of phase interfaces
  • Kinetic relation
  • Model error
  • Numerical efficiency