Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermodynamically consistent modeling of granular-fluid mixtures incorporating pore pressure evolution and hypoplastic behavior

  • 128 Accesses

  • 6 Citations


This paper presents a new, thermodynamically consistent model for granular-fluid mixtures, derived with the entropy principle of Müller and Liu. Including a pressure diffusion equation combined with the concept of extra pore pressure, and hypoplastic material behavior, thermodynamic restrictions are imposed on the constitutive quantities. The model is applied to a granular-fluid flow, using a closing assumption in conjunction with the fluid pressure. While the focal point of the work is the conceptional part, i.e. the thermodynamic consistent modeling, numerical simulations with physically reasonable results for simple shear flow are also carried out.

This is a preview of subscription content, log in to check access.


  1. 1.

    Ahmadi, G.: A generalized continuum theory for granular materials. Int. J. Non-Linear Mech. 17(1), 21–33 (1982)

  2. 2.

    Albers, B.: Linear wave propagation in unsaturated rocks and soils. In: Continuous Media with Microstructure, pp. 205–220. Springer, (2010)

  3. 3.

    Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 225, pp. 49–63. The Royal Society (1954)

  4. 4.

    Bauer, E.: Calibration of a comprehensive hypoplastic model for granular materials. Soilds Found. 36(1), 13–26 (1996)

  5. 5.

    Bauer, G.: Thermodynamische Betrachtung einer gesättigten Mischung. Ph.D. thesis, Technische Universität Darmstadt (1997)

  6. 6.

    Bluhm, J., de Boer, R., Wilmanski, K.: The thermodynamic structure of the two-component model of porous incompressible materials with true mass densities. Mech. Res. Commun. 22(2), 171–180 (1995)

  7. 7.

    de Boer, R., Ehlers, W.: The development of the concept of effective stresses. Acta Mech. 83(1), 77–92 (1990)

  8. 8.

    Bouchut, F., Fernández-Nieto, E.D., Mangeney, A., Narbona-Reina, G.: A two-phase two-layer model for fluidized granular flows with dilatancy effects (2015)

  9. 9.

    Campbell, C., Brennen, C.: Chute flows of granular material: some computer simulations. J. Appl. Mech. 52(1), 172–178 (1985)

  10. 10.

    Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)

  11. 11.

    Fang, C.: Modeling dry granular mass flows as elasto-visco-hypoplastic continua with microstructural effects. I. Thermodynamically consistent constitutive model. Acta Mech. 197(3), 173–189 (2008)

  12. 12.

    Fang, C.: A k-\(\epsilon \) turbulence closure model of an isothermal dry granular dense matter. Contin. Mech. Thermodyn. 28(4), 1049–1069 (2016)

  13. 13.

    Fang, C.: Rapid dry granular flows down an incline: a constitutive theory with an independent kinematic internal length. Meccanica 51(6), 1387–1403 (2016)

  14. 14.

    Fang, C., Wang, Y., Hutter, K.: Shearing flows of a dry granular material-hypoplastic constitutive theory and numerical simulations. Int. J. Numer. Anal. Methods Geomech. 30(14), 1409–1437 (2006)

  15. 15.

    George, D.L., Iverson, R.M.: A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure. Ital. J. Eng. Geol. Environ. 10, 2011–2013 (2011)

  16. 16.

    Goodman, M., Cowin, S.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44(4), 249–266 (1972)

  17. 17.

    Gray, J.M.N.T., Tai, Y.C.: Particle size segregation, granular shocks and stratification patterns. In: Herrmann, H.J., Hovi, J.P., Luding, S. (eds.) Physics of Dry Granular Media, pp. 697–702. Springer, Netherlands (1998)

  18. 18.

    Hanes, D.M., Inman, D.L.: Observations of rapidly flowing granular-fluid materials. J. Fluid Mech. 150, 357–380 (1985)

  19. 19.

    Hess, J.: Konstitutive Modellierung von Granulat-Fluid-Mischungen durch Auswertung des Entropieprinzips. Master’s thesis, Technische Universität Darmstadt (2014)

  20. 20.

    Hutter, K.: The foundations of thermodynamics, its basic postulates and implications. a review of modern thermodynamics. Acta Mech. 27(1–4), 1–54 (1977)

  21. 21.

    Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling. Springer, Berlin (2004)

  22. 22.

    Hutter, K., Jöhnk, K., Svendsen, B.: On interfacial transition conditions in two phase gravity flow. Zeitschrift für Angewandte Mathematik und Physik 45(5), 746–762 (1994)

  23. 23.

    Hutter, K., Schneider, L.: Important aspects in the formulation of solid-fluid debris-flow models. Part I. Thermodynamic implications. Contin. Mech. Thermodyn. 22(5), 363–390 (2010)

  24. 24.

    Hutter, K., Schneider, L.: Important aspects in the formulation of solid-fluid debris-flow models. Part II. Constitutive modelling. Contin. Mech. Thermodyn. 22(5), 391–411 (2010)

  25. 25.

    Iverson, R.M.: The physics of debris flow. Rev. Geophys. 35(3), 245–296 (1997)

  26. 26.

    Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. J. Geophys. Res. 106, 537–552 (2001)

  27. 27.

    Iverson, R.M., George, D.L.: A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 470. The Royal Society (2014)

  28. 28.

    Kirchner, N.P.: Thermodynamically consistent modelling of abrasive granular materials. I. Non-equilibrium theory. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 458, pp. 2153–2176. The Royal Society (2002)

  29. 29.

    Kirchner, N.P., Teufel, A.: Thermodynamically consistent modelling of abrasive granular materials. II. Thermodynamic equilibrium and applications to steady shear flows. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 458, pp. 3053–3077. The Royal Society (2002)

  30. 30.

    Kolymbas, D.: A rate-dependent constitutive equation for soils. Mech. Res. Commun. 4(6), 367–372 (1977)

  31. 31.

    Kolymbas, D.: An outline of hypoplasticity. Arch. Appl. Mech. 61(3), 143–151 (1991)

  32. 32.

    Kowalski, J., McElwaine, J.N.: Shallow two-component gravity-driven flows with vertical variation. J. Fluid Mech. 714, 434–462 (2013)

  33. 33.

    Lee, C.H., Huang, C.J.: Model of sheared granular material and application to surface-driven granular flows under gravity. Phys. Fluids 22(4), 043,307–1–10 (2010)

  34. 34.

    Liu, I.S.: Method of lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 46(2), 131–148 (1972)

  35. 35.

    Liu, I.S.: On chemical potencial and imcompressible porous media. J. de Mécanique 19(2), 327–342 (1980)

  36. 36.

    Liu, I.S.: On pore fluid pressure and effective solid stress in the mixture theory of porous media. In: Albers, B. (ed.) Contin. Media Microstruct., pp. 19–28. Springer, Berlin (2010)

  37. 37.

    Liu, I.S.: A solid-fluid mixture theory of porous media. Int. J. Eng. Sci. 84, 133–146 (2014)

  38. 38.

    Major, J.J., Pierson, T.C.: Debris flow rheology: experimental analysis of fine-grained slurries. Water Resour. Res. 28(3), 841–857 (1992)

  39. 39.

    Müller, I.: A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28(1), 1–39 (1968)

  40. 40.

    Müller, I.: The coldness, a universal function in thermoelastic bodies. Arch. Ration. Mech. Anal. 41(5), 319–332 (1971)

  41. 41.

    Müller, I.: Die kältefunktion, eine universelle Funktion in der Thermodynamik viskoser wärmeleitender Flüssigkeiten. Arch. Ration. Mech. Anal. 40(1), 1–36 (1971)

  42. 42.

    Müller, I., Liu, I.S.: Thermodynamics of mixtures of fluids. In:C. Truesdell (ed.) Rational Thermodynamics. Springer (1984)

  43. 43.

    Papenfuss, C., Forest, S.: Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom. J. Non-Equilib. Thermodyn. 31(4), 319–353 (2006)

  44. 44.

    Passman, S.: Mixtures of granular materials. Int. J. Eng. Sci. 15(2), 117–129 (1977)

  45. 45.

    Passman, S.L., Nunziato, J.W., Bailey, P.B., Reed, K.W.: Shearing motion of a fluid saturated granular material. J. Rheol. 30(1), 167–192 (1986)

  46. 46.

    Passman, S.L., Nunziato, J.W., Walsh, E.K.: A theory of multiphase mixtures. In: Truesdell, C. (ed.) Rational Thermodynamics. Springer, Berlin (1984)

  47. 47.

    Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 363(1832), 1573–1601 (2005)

  48. 48.

    Pudasaini, S.P.: A general two-phase debris flow model. J. Geophys. Res. 117 (2012)

  49. 49.

    Pudasaini, S.P., Hutter, K.: Rapid shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495, 193–208 (2003)

  50. 50.

    Richardson, J., Zaki, W.: The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Eng. Sci. 3(2), 65–73 (1954)

  51. 51.

    Scotto di Santolo, A., Pellegrino, A., Evangelista, A.: Experimental study on the rheological behaviour of debris flow. Nat. Hazards Earth Syst. Sci. 10(12), 2507–2514 (2010)

  52. 52.

    Savage, S., Iverson, R.M.: Surge dynamics coupled to pore-pressure evolution in debris flows, pp. 503–514. Millpress, (2003)

  53. 53.

    Savage, S., Sayed, M.: Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. J. Fluid Mech. 142, 391–430 (1984)

  54. 54.

    Savage, S.B.: Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92(1), 53–96 (1979)

  55. 55.

    Savage, S.B.: The mechanics of rapid granular flows. Adv. Appl. Mech. 24, 289–366 (1984)

  56. 56.

    Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)

  57. 57.

    Savage, S.B., Hutter, K.: The dynamics of avalanches of granular materials from initiation to runout. Part I Anal. Acta Mech. 86, 201–223 (1991)

  58. 58.

    Schneider, L., Hutter, K.: Solid-Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin (2009)

  59. 59.

    Svendsen, B.: On the thermodynamics of thermoelastic materials with additional scalar degrees of freedom. Contin. Mech. Thermodyn. 11(4), 247–262 (1999)

  60. 60.

    Svendsen, B., Hutter, K.: On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Eng. Sci. 33(14), 2021–2054 (1995)

  61. 61.

    Svendsen, B., Hutter, K., Laloui, L.: Constitutive models for granular materials including quasi-static frictional behaviour: toward a thermodynamic theory of plasticity. Contin. Mech. Thermodyn. 11(4), 263–275 (1999)

  62. 62.

    Takahashi, T.: Debris Flow. A.A. Balkema, The Netherlands (1991)

  63. 63.

    Teufel, A.: Simple flow configurations in hypoplastic abrasive materials. Master’s thesis, Technische Universität Darmstadt (2001)

  64. 64.

    Truesdell, C.: Sulle basi della termomeccanica. Rend. Lincei 22(8), 33–38 (1957)

  65. 65.

    Truesdell, C.: Mechanical basis of diffusion. J. Chem. Phys. 37(10), 2336–2344 (1962)

  66. 66.

    Truesdell, C.: Thermodynamics of diffusion. In: Truesdell, C. (ed.) Rational Thermodynamics. Springer, Berlin (1984)

  67. 67.

    Wang, Y., Hutter, K.: Comparison of two entropy principles and their applications in granular flows with / without fluid. Arch. Mech. 51(5), 605–632 (1999)

  68. 68.

    Wang, Y., Hutter, K.: A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheol. Acta 38, 214–223 (1999)

  69. 69.

    Wang, Y., Hutter, K.: A constitutive theory of multiphase mixtures and its application in shearing flows of saturated solid-fluid mixtures. Granul. Matter. 1, 163–181 (1999)

  70. 70.

    Wang, Y., Hutter, K.: Shearing flows in a Goodman-Cowin type material—theory and numerical results. Part. Sci. Technol. 17(1), 97–124 (1999)

  71. 71.

    Wang, Y., Hutter, K.: Granular material theories revisited. In: Geomorphological Fluid Mechanics, pp. 79–107. Springer, (2001)

  72. 72.

    Wilmanski, K.: Porous media at finite strains. The new model with the balance equation for porosity. Arch. Mech. 48(4), 591–628 (1996)

  73. 73.

    Wu, W., Bauer, E., Kolymbas, D.: Hypoplastic constitutive model with critical state for granular materials. Mech. Mater. 23(1), 45–69 (1996)

Download references

Author information

Correspondence to Julian Heß.

Additional information

Dedicated to Prof. em. Dr. Dr. h.c. Ingo Müller on the occasion of the celebration of his 80th birthday, 23.12.2016.

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heß, J., Wang, Y. & Hutter, K. Thermodynamically consistent modeling of granular-fluid mixtures incorporating pore pressure evolution and hypoplastic behavior. Continuum Mech. Thermodyn. 29, 311–343 (2017). https://doi.org/10.1007/s00161-016-0535-9

Download citation


  • Müller-Liu entropy principle
  • Debris Flow
  • Hypoplasticity
  • Pore fluid pressure