Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Saint-Venant problem for solids with helical anisotropy

  • 110 Accesses

  • 2 Citations

Abstract

We discuss the solution of Saint-Venant’s problem for solids with helical anisotropy. Here the governing relations of the theory of elasticity in terms of displacements were presented using the helical coordinate system. We proposed an approach to construct elementary Saint-Venant solutions using integration of ordinary differential equations with variable coefficients in the case of a circular cylinder with helical anisotropy. Elementary solutions correspond to problems of extension, of torsion, of pure bending and of bending of shear force. The solution of the problem is obtained using small parameter method for small values of twist angle and numerically for arbitrary values. Numeric results correspond to problems of extension–torsion. Dependencies of the stiffness matrix (in dimensionless form) on angle between the tangent to the helical coil and the axis of the cylinder corresponding to stiffness on stretching and torsion are illustrated graphically for different values of material and geometrical parameters.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Andreaus U., Placidi L., Rega G.: Soft impact dynamics of a cantilever beam: equivalent SDOF model versus infinite-dimensional system. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225(10), 2444–2456 (2011)

  2. 2

    Antman S.S.: Nonlinear Problems of Elasticity, vol. 107. Applied Mathematical Sciences. Springer, New York (1995)

  3. 3

    Batra R.: Saint-Venant’s principle for a helical spring. J. Appl. Mech. Trans. ASME 45(2), 297–301 (1978)

  4. 4

    Batra R., Yang J.: Saint-Venant’s principle for linear elastic porous materials. J. Elast. 39(3), 265–271 (1995)

  5. 5

    Batra R., Yang J.: Saint-Venant’s principle in linear piezoelectricity. J. Elast. 38(2), 209–218 (1995)

  6. 6

    Batra R., Zhong X.: Saint-venant’s principle for a helical piezoelectric body. J. Elast. 43(1), 69–79 (1996)

  7. 7

    Batra R.C.: Saint-Venant’s principle for a micropolar helical body. Acta Mech. 42(1–2), 99–109 (1982)

  8. 8

    Berdichevskii V.L., Starosel’skii L.A.: Bending, extension, and torsion of naturally twisted rods. J. Appl. Math. Mech. 49(6), 746–755 (1985)

  9. 9

    Berglund K.: Generalization of Saint-Venant’s principle to micropolar continua. Arch. Rational Mech. Anal. 64(4), 317–326 (1977)

  10. 10

    Bîrsan M.: On Saint-Venant’s principle in the theory of Cosserat elastic shells. Int. J. Eng. Sci. 45(2–8), 187–198 (2007)

  11. 11

    Bîrsan M., Altenbach H., Sadowski T., Eremeyev V., Pietras D.: Deformation analysis of functionally graded beams by the direct approach. Compos. Part B Eng. 43(3), 1315–1328 (2012)

  12. 12

    Cao J., Akkerman R., Boisse P., Chen J., Cheng H., De Graaf E., Gorczyca J., Harrison P., Hivet G., Launay J. et al.: Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos. Part A Appl. Sci. Manuf. 39(6), 1037–1053 (2008)

  13. 13

    Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 2014). doi:10.1177/1081286514531265

  14. 14

    Chirita S., Aron M.: On Saint-Venant’s principle in micropolar elasticity. Int. J. Eng. Sci. 32(12), 1893–1901 (1994)

  15. 15

    Chirita S., Ciarletta M., Fabrizio M.: Saint-Venant’s principle in linear viscoelasticity. Int. J. Eng. Sci. 35(13–12), 1221–1236 (1997)

  16. 16

    Cristensen R.M.: Mechanics of Composite Matherials. Wiley, New York (1979)

  17. 17

    De Cicco S., Nappa L.: On Saint-Venant’s principle for micropolar viscoelastic bodies. Int. J. Eng. Sci. 37(7), 883–893 (1999)

  18. 18

    Dell’Isola F., Batra R.C.: Saint-Venant’s problem for porous linear elastic materials. J. Elast. 47(1), 73–81 (1997)

  19. 19

    Dell’Isola F., Rosa L.: Perturbation methods in torsion of thin hollow Saint-Venant cylinders. Mech. Res. Commun. 23(2), 145–150 (1996)

  20. 20

    Dell’Isola F., Ruta G.C.: Perturbation series for shear stress in flexure of Saint-Venant cylinders with Bredt-like sections. Mech. Res. Commun. 23(5), 557–564 (1996)

  21. 21

    Dell’Isola F., Steigmann D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)

  22. 22

    Dong S., Kosmatka J., Lin H.: On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinder: Part I—Methodology for Saint-Venant solutions. J. Appl. Mech. Trans. ASME 68(3), 376–381 (2001)

  23. 23

    Getman I.P., Ustinov Y.A.: Methods of analysing ropes. The extension–torsion method. J. Appl. Math. Mech. 72(1), 48–53 (2008)

  24. 24

    Ghosh A., Fischer P.: Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009)

  25. 25

    Girchenko A.A., Eremeyev V.A., Altenbach H.: Interaction of a helical shell with a nonlinear viscous fluid. Int. J. Eng. Sci. 61, 53–58 (2012)

  26. 26

    Greco L., Cuomo M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

  27. 27

    Hodges, D.H.: Nonlinear Composite Beam Theory, vol. 213. American Institute of Aeronautics and Astronautics, Reston (2006)

  28. 28

    Horgan C., Knowles J.: The effect of nonlinearity on a principle of a Saint-Venant type. J. Elast. 11(3), 271–291 (1981)

  29. 29

    Horgan C., Payne L.: Saint-Venant’s principle in linear isotropic elasticity for incompressible or nearly incompressible materials. J. Elast. 46(1), 43–52 (1997)

  30. 30

    Horgan C.O.: Recent developments concerning Saint-Venant’s principle: a second update. Appl. Mech. Rev. 49(10 PART 2), S101–S111 (1996)

  31. 31

    Horgan C.O., Knowles J.K.: Recent developments concerning Saint-Venant’s principle. Adv. Appl. Mech. 23(C), 179–269 (1983)

  32. 32

    Horgan C.O., Simmonds J.G.: Saint-venant end effects in composite structures. Compos. Eng. 4(3), 279–286 (1994)

  33. 33

    Ieşan D.: Saint-Venant’s problem for inhomogeneous and anisotropic elastic bodies. J. Elast. 6(3), 277–294 (1976)

  34. 34

    Ieşan D.: Saint-Venant’s problem for inhomogeneous bodies. Int. J. Eng. Sci. 14, 353–360 (1976)

  35. 35

    Ieşan D.: Saint-Venant’s Problem. Springer, Berlin (1987)

  36. 36

    Ieşan D.: Classical and Generalized Models of Elastic Rods. CRC Press, Boca Raton (2008)

  37. 37

    Ieşan D.: Chiral effects in uniformly loaded rods. J. Mech. Phys. Solids 58(9), 1272–1285 (2010)

  38. 38

    Kargin D.P., Kurbatova N.V., Ustinov Y.A.: Homogeneous solutions and Saint-Venant problems for a helical spring. Appl. Math. Mech. 62(4), 641–648 (1998)

  39. 39

    Kasyanov V., Ozolanta I., Purinya B., Ozols A., Kancevich V.: Compliance of a biocomposite vascular tissue in longitudinal and circumferential directions as a basis for creation of artificial substitutes. Mech. Compos. Mater. 39(4), 347–358 (2003)

  40. 40

    Knops R., Payne L.: A Saint-Venant principle for nonlinear elasticity. Arch. Ration. Mech. Anal. 81(1), 1–12 (1983)

  41. 41

    Kurbatova, N.V., Ustinov, Y.A.: The Saint-Venant problems for rods with physical and geometrical anisotropy (in Russian). Izvestia of Universities. North-Caucasus. Region. Math. Model. Natural Science. Special Issue, pp. 154–157 (2001)

  42. 42

    Lakes R.: Elastic and viscoelastic behavior of chiral materials. Int. J. Mech. Sci. 43(7), 1579–1589 (2001)

  43. 43

    Madeo, A., Ferretti, M., Dell’Isola, F., Boisse, P.: Thick fibrous composite reinforcements behave as special second-gradient materials: three-point bending of 3d interlocks. Zeitschrift für angewandte Mathematik und Physik, pp. 1–20 (2015)

  44. 44

    Pedley T.J.: The Fluid Mechanics Blood Vessels. Cambridge University Press, New York (1980)

  45. 45

    Percec V., Dulcey A.E., Balagurusamy V.S.K., Miura Y., Smidrkal J., Peterca M., Hummelin S., Edlund U., Hudson S.D., Heiney P.A., Duan H., Magonev S.N., Vinogradov S.A.: Analysis of stress–strain state of the naturally twisted rod bending by transverse force on the basis of the finite element method. Nature 430(7001), 764–768 (2004)

  46. 46

    Pobedria B.E.: Mechanics of Composites (in Russian). Moscow State University Press, Moscow (1984)

  47. 47

    Romanova N.M., Ustinov Y.A.: The Saint-Venant problem of the bending of a cylinder with helical anisotropy. J. Appl. Math. Mech. 72(4), 481–488 (2008)

  48. 48

    Ruan X., Danforth S., Safari A., Chou T.W.: Saint-Venant end effects in piezoceramic materials. Int. J. Solids Struct. 37(19), 2625–2637 (2000)

  49. 49

    Saint-Venant, A.J.C.B.: Memoire sur la torsion des prismes. Mem. Savants Etrangers 14, 233–560 (1856)

  50. 50

    Svetlitsky V.A.: Statics of Rods. Springer, Berlin (2000)

  51. 51

    Tarn J.Q., Huang L.J.: Saint-Venant end effects in multilayered piezoelectric laminates. Int. J. Solids Struct. 39(19), 4979–4998 (2002)

  52. 52

    Thwaites J.J.: The elastic deformation of a rod with helical ansiotropy. Mech. Sci. 19(3), 161–168 (1977)

  53. 53

    Trabucho L., Viano J.M.: Mathematical modelling of rods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 4, pp. 487–974. Elsevier, Amsterdam (1996)

  54. 54

    Ustinov Y., Kurbatova N.V., Chumakova S.: Analysis of stress–strain state of the naturally twisted rod bending by transverse force on the basis of the finite element method (in Russian). Vladikakazian Math. J. 15(3), 45–53 (2013)

  55. 55

    Ustinov Y.A.: Saint-Venant problems for a bar with a screw anisotropy. Doklady Phys. 46(10), 756–759 (2001)

  56. 56

    Ustinov Y.A.: Saint-Venant Problem for Pseudo-Cylinder (in Russian). Nauka, Moscow (2003)

  57. 57

    Ustinov Y.A.: Solutions of the Saint-Venant problem for a cylinder with helical anisotropy. J. Appl. Math. Mech. 67(1), 89–98 (2003)

  58. 58

    Ustinov Y.A.: A model of the helical pulsed flow of blood in arteries. Doklady Phys. 49(9), 543–547 (2004)

  59. 59

    Zubov L.M.: The non-linear Saint-Venant problem of the torsion, stretching and bending of a naturally twisted rod. J. Appl. Math. Mech. 70(2), 300–310 (2006)

  60. 60

    Zubov L.M.: The problem of the equilibrium of a helical spring in the non-linear three-dimensional theory of elasticity. J. Appl. Math. Mech. 71(4), 519–526 (2007)

Download references

Author information

Correspondence to Natalia V. Kurbatova.

Additional information

The first author acknowledges the supports by the Ministry of Education and Science of the Russian Federation, Project No. 1334 the base part of the Job No. 2014/174—public works in the field of scientific activity.

Communicated by Victor Eremeyev, Peter Schiavone and Francesco dell’Isola.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurbatova, N.V., Ustinov, Y.A. Saint-Venant problem for solids with helical anisotropy. Continuum Mech. Thermodyn. 28, 465–476 (2016). https://doi.org/10.1007/s00161-015-0445-2

Download citation

Keywords

  • Helical anisotropy
  • Saint-Venant problem
  • Elastic cylinder