Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model

  • 365 Accesses

  • 39 Citations


Thermomechanics and granular micromechanics approaches are combined to derive constitutive equations for modeling rate-dependent granular materials with damage and plasticity. The derivation is motivated by the recognition that the effect of micro-scale mechanisms upon the macro-scale behavior is known to be significant for granular materials. A general thermomechanical framework applicable to rate-dependent granular materials with damage and plasticity is developed. Based upon this framework, an expression for macro-scale Cauchy stress tensor is obtained in terms of the micro-scale grain interaction forces and the relationship between micro- and macro-scale kinematics. In addition, a Clausius–Duhem type inequality applicable to inter-granular interaction is derived, which is used to establish micro-scale constitutive relations for particular type of inter-granular interactions. The expression for Cauchy stress tensor and the micro-scale constitutive relations is then combined under a mean field kinematic assumption to obtain evolution-type macro-scale constitutive equations. The advantage of the granular micromechanics approach is that the damage and plasticity are defined using simple 1d functions at micro-scale, and complicated plastic potentials, damage functions and rules for their evolution are not required. The resultant model is applied to investigate primary, secondary and tertiary creep, creep-recovery as well as rate-dependent response under uniaxial compressive loading. Model applicability is also demonstrated for asymmetric tensile-compressive response under creep-recovery loading. The model is used to evaluate the evolution of elastic energy, and viscous, plastic and damage dissipation at the macro- and micro-scale with respect to creep time and loading level. The results show the development of loading-induced anisotropy due to damage and plasticity in these materials.

This is a preview of subscription content, log in to check access.


  1. 1

    Pipkin A.C., Rogers T.G.: A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 16(1), 59–72 (1968). doi:10.1016/0022-5096(68)90016-1

  2. 2

    Wineman A.: Nonlinear viscoelastic solids—a review. Math. Mech. Solids 14(3), 300–366 (2009). doi:10.1177/1081286509103660

  3. 3

    Darabi M.K., Abu Al-Rub R.K., Masad E.A., Huang C.W., Little D.N.: A thermo-viscoelastic–viscoplastic–viscodamage constitutive model for asphaltic materials. Int. J. Solids Struct. 48(1), 191–207 (2011). doi:10.1016/j.ijsolstr.2010.09.019

  4. 4

    Lai J., Bakker A.: 3-D schapery representation for non-linear viscoelasticity and finite element implementation. Comput. Mech. 18(3), 182–191 (1996). doi:10.1007/Bf00369936

  5. 5

    Schapery R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)

  6. 6

    Schapery R.A.: Nonlinear viscoelastic solids. Int. J. Solids and Struct. 37(1–2), 359–366 (2000). doi:10.1016/S0020-7683(99)00099-2

  7. 7

    Green A.E., Rivlin R.S.: The mechanics of non-linear materials with memory. Arch. Ration. Mech. Anal. 1(1), 1–21 (1957)

  8. 8

    Drozdov A.D.: A constitutive model for nonlinear viscoelastic media. Int. J. Solids Struct. 34(21), 2685–2707 (1997). doi:10.1016/S0020-7683(96)00178-3

  9. 9

    Abu Al-Rub R.K., Darabi M.K.: A thermodynamic framework for constitutive modeling of time- and rate-dependent materials. Part I: theory. Int. J. Plast. 34, 61–92 (2012). doi:10.1016/j.ijplas.2012.01.002

  10. 10

    Misra A., Singh V.: Micromechanical model for viscoelastic materials undergoing damage. Contin. Mech. Thermodyn. 25(2–4), 343–358 (2013). doi:10.1007/s00161-012-0262-9

  11. 11

    Cosserat E., Cosserat F.: Theory of Deformable Bodies. Scientific Library: A. Hermann And Sons, Paris (1909)

  12. 12

    Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

  13. 13

    Toupin R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

  14. 14

    Eringen A.C.: Microcontinuum Field Theories: Foundations and Solids, vol. 487. Springer, New York (1999)

  15. 15

    Green A.E., Rivlin R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17(2), 113–147 (1964)

  16. 16

    Germain P.: Method of virtual power in continuum mechanics. Part 2: microstructure. Siam J. Appl. Math. 25(3), 556–575 (1973). doi:10.1137/0125053

  17. 17

    Chang C.S., Misra A.: Theoretical and experimental-study of regular packings of granules. J. Eng. Mech. ASCE 115(4), 704–720 (1989)

  18. 18

    Chang C.S., Misra A.: Packing structure and mechanical-properties of granulates. J. Eng. Mech. ASCE 116(5), 1077–1093 (1990)

  19. 19

    Digby P.J.: The effective elastic moduli of porous granular rocks. J. Appl. Mech. 48, 803–808 (1981)

  20. 20

    Walton K.: The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids 35, 213–226 (1987)

  21. 21

    Deresiewicz H.: Stress–strain relations for a simple model of a granular medium. J. Appl. Mech. 25, 402–406 (1958)

  22. 22

    Duffy J., Mindlin R.D.: Stress–strain relations of a granular medium. J. Appl. Mech. 24(4), 585–893 (1957)

  23. 23

    Jenkins J.T.: Volume change in small strain axisymmetric deformations of a granular material. In: Satake, M., Jenkins, J.T. (eds.) Micromechanics of Granular Materials, pp. 245–252. Elsevier, Amsterdam (1988)

  24. 24

    Navier C.L.: Sur les lois de l’equilibre et du mouvement des corps solides elastiques. Memoire de l’Academie Royale de Sciences 7, 375–393 (1827)

  25. 25

    Cauchy, A.-L.: Sur l’equilibre et le mouvement d’un systeme de points materiels sollicites par des forces d’attraction ou de repulsion mutuelle. Excercises de Mathematiques 3, 188–212 (1826–1830)

  26. 26

    dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Mech. Math. Solids (2013). doi:10.1177/1081286513509811

  27. 27

    Arndt M., Griebel M.: Derivation of higher order gradient continuum models From atomistic models for crystalline solids. Multiscale Model. Simul. 4(2), 531–562 (2005)

  28. 28

    Blanc X., Le Bris C., Lions P.L.: From molecular models to continuum mechanics. Cr. Acad. Sci. I Math. 332(10), 949–956 (2001)

  29. 29

    E, W.N., Huang, Z.Y.: A dynamic atomistic-continuum method for the simulation of crystalline materials. J. Comput. Phys. 182(1), 234–261 (2002). doi:10.1006/jcph.2002.7164

  30. 30

    Chang C.S., Misra A., Acheampong K.: Elastoplastic deformation for particulates with frictional contacts. J. Eng. Mech. ASCE 118(8), 1692–1707 (1992). doi:10.1061/(Asce)0733-9399(1992)118:8(1692)

  31. 31

    Chang C.S., Hicher P.Y.: An elasto-plastic model for granular materials with microstructural consideration. Int. J. Solids Struct. 42(14), 4258–4277 (2005). doi:10.1016/j.ijsolstr.2004.09.021

  32. 32

    Chang, C.S., Liao, C.L.: Estimates of elastic modulus for media of randomly packed granules. Appl. Mech. Rev. 47(1), 197–206 (1994)

  33. 33

    Chang C.S., Ma L.: Elastic-material constants for isotropic granular solids with particle rotation. Int. J. Solids Struct. 29(8), 1001–1018 (1992). doi:10.1016/0020-7683(92)90071-Z

  34. 34

    Misra A., Chang C.S.: Effective elastic moduli of heterogeneous granular solids. Int. J. Solids Struct. 30(18), 2547–2566 (1993)

  35. 35

    Misra A., Yang Y.: Micromechanical model for cohesive materials based upon pseudo-granular structure. Int. J. Solids Struct. 47(21), 2970–2981 (2010). doi:10.1016/j.ijsolstr.2010.07.002

  36. 36

    Alibert J.J., Seppecher P., Dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003). doi:10.1177/108128603029658

  37. 37

    dell’Isola F., Vidoli S.: Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping. Arch. Appl. Mech. 68(1), 1–19 (1998)

  38. 38

    Seppecher P., Alibert J.-J., dell’Isola F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser. 319(1), 012018 (2011)

  39. 39

    Chang C.S., Askes H., Sluys L.J.: Higher-order strain/higher-order stress gradient models derived from a discrete microstructure, with application to fracture. Eng. Fract. Mech. 69(17), 1907–1924 (2002)

  40. 40

    Yang Y., Ching W.-Y., Misra A.:Higher-order continuum theory applied to fracture simulation of nano-scale intergranular glassy film. J. Nanomech. Micromech. 1(2), 60–71 (2011)

  41. 41

    Yang Y., Misra A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012). doi:10.1016/j.ijsolstr.2012.05.024

  42. 42

    Coleman B.D.: Thermodynamics of materials with memory. Arch. Ration. Mech. Anal. 17(1), 1–46 (1964)

  43. 43

    Ziegler H.: An Introduction to Thermomechanics. North-Holland, Amsterdam (1983)

  44. 44

    Maugin G.A.: The Thermomechanics of Plasticity and Fracture, vol. 7. Cambridge University Press, Cambridge, MA (1992)

  45. 45

    Maugin G.A., Drouot R., Sidoroff F.: Continuum Thermomechanics: The Art and Science of Modelling Material Behavior A Volume Dedicated to Paul Germain on the Occasion of His 80th Birthday, vol. 76. Springer, Berlin (2000)

  46. 46

    Benoit H., Decker D., Duplessix R., Picot C., Rempp P., Cotton J., Farnoux B., Jannink G., Ober R.: Characterization of polystyrene networks by small-angle neutron scattering. J. Polym. Sci. Poly. Phys. Ed. 14(12), 2119–2128 (1976)

  47. 47

    De Gennes P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, NY (1979)

  48. 48

    Hazony D., Hazony Y., Katz J.L., Welsch G.: Average acoustic pulse dispersion length in condensed matter channels. Philos. Mag. 86(20), 3043–3060 (2006). doi:10.1080/14786430600664130

  49. 49

    Solar, M., Meyer, H., Gauthier, C., Fond, C., Benzerara, O., Schirrer, R., Baschnagel, J.: Mechanical behavior of linear amorphous polymers: Comparison between molecular dynamics and finite-element simulations. Phys. Rev. E 85(2) (2012). doi:10.1103/Physreve.85.021808

  50. 50

    Greene, M.S., Li, Y., Chen, W., Liu, W.K.: The archetype-genome exemplar in molecular dynamics and continuum mechanics. Comput. Mech., 1–51 (2013). doi:10.1007/s00466-013-0925-9

  51. 51

    Ghiba, I.-D., Neff, P., Madeo, A., Placidi, L., Rosi, G.: The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics. Mathematics and Mechanics of Solids, arXiv preprint arXiv:1308.3762 (2013). doi:10.1177/1081286513516972

  52. 52

    Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Contin. Mech. Thermodyn., 1–20 (2013). doi:10.1007/s00161-013-0329-2

  53. 53

    Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn., 1–43 (2013). doi:10.1007/s00161-013-0322-9

  54. 54

    Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. (2014). doi:10.1016/j.ijengsci.2014.02.022

  55. 55

    Houlsby G.T., Puzrin A.M.: A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plast. 16(9), 1017–1047 (2000). doi:10.1016/S0749-6419(99)00073-X

  56. 56

    dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Mathematik und Physik 63(6), 1119–1141 (2012). doi:10.1007/s00033-012-0197-9

  57. 57

    Seppecher, P.: Second-gradient theory: application to Cahn–Hilliard fluids. In: Continuum Thermomechanics, pp. 379–388. Springer, Berlin (2002)

  58. 58

    Magoariec H., Danescu A., Cambou B.: Nonlocal orientational distribution of contact forces in granular samples containing elongated particles. Acta Geotech. 3, 49–60 (2008)

  59. 59

    Houlsby G.T., Puzrin A.M.: Principles of Hyperplasticity: An Approach to Plasticity Theory Based on Thermodynamic Principles. Springer, Berlin (2006)

  60. 60

    Abu Al-Rub R.K., Voyiadjis G.Z.: On the coupling of anisotropic damage and plasticity models for ductile materials. Int. J. Solids Struct. 40(11), 2611–2643 (2003). doi:10.1016/S0020-7683(03)00109-4

  61. 61

    Einav I., Houlsby G.T., Nguyen G.D.: Coupled damage and plasticity models derived from energy and dissipation potentials. Int. J. Solids Struct. 44(7–8), 2487–2508 (2007). doi:10.1016/j.ijsolstr.2006.07.019

  62. 62

    Marottide Sciarra F.: Hardening plasticity with nonlocal strain damage. Int. J. Plast. 34, 114–138 (2012)

  63. 63

    Voyiadjis G.Z., Abu Al-Rub R.K., Palazotto A.N.: Thermodynamic framework for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for dynamic localization problems using gradient theory. Int. J. Plast. 20(6), 981–1038 (2004). doi:10.1016/j.ijplas.2003.10.002

  64. 64

    Carcaterra A.: Ensemble energy average and energy flow relationships for nonstationary vibrating systems. J. Sound Vib. 288(3), 751–790 (2005). doi:10.1016/j.jsv.2005.07.015

  65. 65

    Carcaterra A., Akay A.: Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems. J. Acoust. Soc. Am. 121(4), 1971–1982 (2007). doi:10.1121/1.2697030

  66. 66

    Culla A., Sestieri A., Carcaterra A.: Energy flow uncertainties in vibrating systems: definition of a statistical confidence factor. Mech. Syst. Signal. Process. 17(3), 635–663 (2003). doi:10.1006/mssp.2002.1487

  67. 67

    Rinaldi A., Krajcinovic D., Peralta P., Lai Y.C.: Lattice models of polycrystalline micro structures: a quantitative approach. Mech. Mater. 40(1–2), 17–36 (2008). doi:10.1016/j.mechmat.2007.02.005

  68. 68

    Rinaldi A., Lai Y.C.: Statistical damage theory of 2D lattices: energetics and physical foundations of damage parameter. Int. J. Plast. 23(10–11), 1796–1825 (2007). doi:10.1016/j.ijplas.2007.03.005

  69. 69

    Rinaldi A.: Bottom-up modeling of damage in heterogeneous quasi-brittle solids. Contin. Mech. Thermodyn. 25(2-4), 359–373 (2013). doi:10.1007/s00161-012-0265-6

  70. 70

    Shim J., Mohr D.: Rate dependent finite strain constitutive model of polyurea. Int. J. Plast. 27(6), 868–886 (2011). doi:10.1016/j.ijplas.2010.10.001

  71. 71

    Mohr D.: Mechanism-based multi-surface plasticity model for ideal truss lattice materials. Int. J. Solids Struct. 42(11), 3235–3260 (2005)

  72. 72

    Chang C.S., Misra A.: Application of uniform strain theory to heterogeneous granular solids. J. Eng. Mech. ASCE 116(10), 2310–2328 (1990). doi:10.1061/(Asce)0733-9399(1990)116:10(2310)

  73. 73

    Clausius R.: XVI. On a mechanical theorem applicable to heat. Lond. Edinb. Dublin Philos. Mag. J. Sci. 40(265), 122–127 (1870)

  74. 74

    Swenson R.J.: Comments on virial theorems for bounded systems. Am. J. Phys. 51(10), 940–942 (1983). doi:10.1119/1.13390

  75. 75

    Irving J.H., Kirkwood J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18(6), 817–829 (1950). doi:10.1063/1.1747782

  76. 76

    Tsai D.H.: Virial theorem and stress calculation in molecular-dynamics. J. Chem. Phys. 70(3), 1375–1382 (1979). doi:10.1063/1.437577

  77. 77

    Subramaniyan A.K., Sun C.T.: Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45(14–15), 4340–4346 (2008). doi:10.1016/j.ijsolstr.2008.03.016

  78. 78

    Zhou M.: A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proc. R. Soc. Math. Phys. Eng. Sci. 459(2037), 2347–2392 (2003). doi:10.1098/rspa.2003.1127

  79. 79

    Contrafatto L., Cuomo A.: A globally convergent numerical algorithm for damaging elasto-plasticity based on the multiplier method. Int. J. Numer. Methods Eng. 63(8), 1089–1125 (2005). doi:10.1002/Nme.1235

  80. 80

    Contrafatto L., Cuomo M.: A new thermodynamically consistent continuum model for hardening plasticity coupled with damage. Int. J. Solids Struct. 39(25), 6241–6271 (2002). doi:10.1016/S0020-7683(02)00470-5

  81. 81

    Misra, A., Singh, V.: Nonlinear granular micromechanics model for multi-axial rate-dependent behavior. Int. J. Solids Struct. (2014). doi:10.1016/j.ijsolstr.2014.02.034

  82. 82

    Cazzani A., Rovati M.: Extrema of Young’s modulus for cubic and transversely isotropic solids. Int. J. Solids Struct. 40(7), 1713–1744 (2003). doi:10.1016/S0020-7683(02)00668-6

  83. 83

    Cazzani A., Rovati M.: Extrema of Young’s modulus for elastic solids with tetragonal symmetry. Int. J. Solids Struct. 42(18–19), 5057–5096 (2005). doi:10.1016/j.ijsolstr.2005.02.018

  84. 84

    Singh V., Misra A., Marangos O., Park J., Ye Q., Kieweg S.L., Spencer P.: Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives. J. Biomed. Mater. Res. B Appl. Biomater. 95(2), 283–290 (2010). doi:10.1002/jbm.b.31712

  85. 85

    Singh V., Misra A., Parthasarathy R., Ye Q., Park J., Spencer P.: Mechanical properties of methacrylate-based model dentin adhesives: effect of loading rate and moisture exposure. J. Biomed. Mater. Res. B Appl. Biomater. 101(8), 1437–1443 (2013). doi:10.1002/jbm.b.32963

  86. 86

    Misra, A., Parthasarathy, R., Singh, V., Spencer, P.: Micro-poromechanics model of fluid-saturated chemically active fibrous media. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik (2013). doi:10.1002/zamm.201300071

  87. 87

    Madeo A., dell’Isola F., Darve F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013). doi:10.1016/j.jmps.2013.06.009

  88. 88

    Madeo A., George D., Remond Y.: Second-gradient models accounting for some effects of microstructure on remodelling of bones reconstructed with bioresorbable materials. Comput. Methods Biomech. 16, 260–261 (2013). doi:10.1080/10255842.2013.815856

  89. 89

    Kuhn M.R., Mitchell J.K.: New perspectives on soil-creep. J. Geotech. Eng. ASCE 119(3), 507–524 (1993)

  90. 90

    Lade P.V., Liggio C.D., Nam J.: Strain rate, creep, and stress drop-creep experiments on crushed coral sand. J. Geotech. Geoenviron. Eng. 135(7), 941–953 (2009). doi:10.1061/(Asce)Gt.1943-5606.0000067

  91. 91

    Zhou X.P., Yang H.Q., Zhang Y.X.: Rate dependent critical strain energy density factor of Huanglong limestone. Theor. Appl. Fract. Mech. 51(1), 57–61 (2009). doi:10.1016/j.tafmec.2009.01.001

Download references

Author information

Correspondence to Anil Misra.

Additional information

Communicated by Francesco dell’Isola and Giuseppe Piccardo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Misra, A., Singh, V. Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Continuum Mech. Thermodyn. 27, 787–817 (2015). https://doi.org/10.1007/s00161-014-0360-y

Download citation


  • Thermomechanics
  • Rate dependence
  • Damage-plasticity
  • Granular materials
  • Micromechanics
  • Time integration