Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nonlinear sensing of ionic polymer metal composites

  • 624 Accesses

  • 49 Citations

Abstract

In this paper, we develop a physics-based model for the charge dynamics of ionic polymer metal composites (IPMCs) in response to mechanical deformations. The proposed chemoelectromechanical model is based on the Poisson–Nernst–Planck system that describes the evolution of the voltage field and the counterion concentration as a dynamic strain is imposed to the IPMC. We use the method of matched asymptotic expansions to find a closed form solution for the Poisson–Nernst–Planck equations and derive an equivalent nonlinear circuit model that is amenable for parametric studies. We report results for a variety of loading scenarios to gather insight into the nonlinear characteristics of IPMC electrical response and their potential application in sensors and energy harvesting devices.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Abdelnour, K., Stinchcombe, A., Porfiri, M., Zhang, J., Childress, S.: Wireless powering of ionic polymer metal composites toward hovering microswimmers. IEEE/ASME Trans. Mechatron. (in press). doi:10.1109/TMECH.2011.2148201

  2. 2

    Anton M., Aabloo A., Punning A., Kruusmaa M.: A mechanical model of a non-uniform ionomeric polymer metal composite actuator. Smart Mater. Struct. 17(2), 025004 (2008)

  3. 3

    Atheshian G.A.: On the theory of reactive mixtures for modeling biological growth. Biomech. Model. Mechanobiol. 6(6), 423–445 (2007)

  4. 4

    Aureli M., Basaran M.E., Porfiri M.: Nonlinear finite amplitude vibrations of sharp-edged beams in viscous fluids. J. Sound Vib. 331(7), 1624–1654 (2012)

  5. 5

    Aureli M., Kopman V., Porfiri M.: Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans. Mechatron. 15(4), 603–614 (2010)

  6. 6

    Aureli M., Lin W., Porfiri M.: On the capacitance-boost of ionic polymer metal composites due to electroless plating: theory and experiments. J. Appl. Phys. 105(10), 104911 (2009)

  7. 7

    Aureli M., Prince C., Porfiri M., Peterson S.D.: Energy harvesting from base excitation of ionic polymer metal composites in fluid environments. Smart Mater. Struct. 19(1), 015003 (2010)

  8. 8

    Bahramzadeh Y., Shahinpoor M.: Dynamic curvature sensing employing ionic-polymer-metal composite sensors. Smart Mater. Struct. 20(9), 094011 (2011)

  9. 9

    Bard A.J., Faulkner L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, Hoboken (2001)

  10. 10

    Batra R.C., Porfiri M., Spinello D.: Electromechanical model of electrically actuated narrow microbeams. J. Microelectromech. Syst. 15(5), 1175–1189 (2006)

  11. 11

    Batra R.C., Porfiri M., Spinello D.: Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater. Struct. 16(6), R23–R31 (2007)

  12. 12

    Berkenblit S.I., Quinn T.M., Grodzinsky A.J.: Molecular electromechanics of cartilaginous tissues and polyelectrolyte gels. J. Electrostat. 34(2–3), 307–330 (1995)

  13. 13

    Biddiss E., Chau T.: Electroactive polymeric sensors in hand prostheses: Bending response of an ionic polymer metal composite. Med. Eng. Phys. 28(6), 568–578 (2006)

  14. 14

    Bonomo C., Brunetto P., Fortuna L., Giannone P., Graziani S., Strazzeri S.: A tactile sensor for biomedical applications based on IPMCs. IEEE Sens. J. 8(7–8), 1486–1493 (2008)

  15. 15

    Bonomo, C., Del~Negro, C., Fortuna, L., Graziani, S.: Characterization of IPMC strip sensorial properties: preliminary results. In: Proceedings of the 2003 International Symposium on Circuits and Systems, vol.~4, pp. 816–819. Bangkok, Thailand (2003)

  16. 16

    Bonomo C., Fortuna L., Giannone P., Graziani S.: A method to characterize the deformation of an IPMC sensing membrane. Sens. Actuator A 123(124), 146–154 (2005)

  17. 17

    Bonomo C., Fortuna L., Giannone P., Graziani S., Strazzeri S.: A model for ionic polymer metal composites as sensors. Smart Mater. Struct. 15(3), 749–758 (2006)

  18. 18

    Bonomo C., Fortuna L., Giannone P., Graziani S., Strazzeri S.: A nonlinear model for ionic polymer metal composites as actuators. Smart Mater. Struct. 16(1), 1–12 (2007)

  19. 19

    Bonomo C., Fortuna L., Giannone P., Graziani S., Strazzeri S.: A resonant force sensor based on ionic polymer metal composites. Smart Mater. Struct. 17(1), 015014 (2008)

  20. 20

    Brufau-Penella J., Puig-Vidal M., Giannone P., Graziani S., Strazzeri S.: Characterization of the harvesting capabilities of an ionic polymer metal composite device. Smart Mater. Struct. 17(1), 015009 (2008)

  21. 21

    Brunetto P., Fortuna L., Giannone P., Graziani S., Pagano F.: A resonant vibrating tactile probe for biomedical applications based on IPMC. IEEE Trans. Instrumen. Meas. 59(5), 1453–1462 (2010)

  22. 22

    Brunetto P., Fortuna L., Graziani S., Strazzeri S.: A model of ionic polymer-metal composite actuators in underwater operations. Smart Mater. Struct. 17(2), 025029 (2008)

  23. 23

    Buechler M.A., Leo D.J.: Characterization and variational modeling of ionic polymer transducers. J. Vib. Acoust. 129(1), 113–120 (2007)

  24. 24

    Chen Z., Hedgepeth D., Tan X.: A nonlinear, control-oriented model for ionic polymer-metal composite actuators. Smart Mater. Struct. 18(5), 055008 (2009)

  25. 25

    Chen Z., Shatara S., Tan X.: Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin. IEEE/ASME Trans. Mechatron. 15(3), 448–459 (2010)

  26. 26

    Chen Z., Tan X.: A control-oriented and physics-based model for ionic polymer-metal composite actuators. IEEE/ASME Trans. Mechatron. 13(5), 519–529 (2008)

  27. 27

    Chen Z., Tan X., Will A., Ziel C.: A dynamic model for ionic polymer-metal composite sensors. Smart Mater. Struct. 16(4), 1477–1488 (2007)

  28. 28

    Chen Z., Um T.I., Bart-Smith H.: A novel fabrication of ionic polymer-metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens. Actuators A: Phys. 168(1), 131–139 (2011)

  29. 29

    Costa~Branco P.J., Dente J.A.: Derivation of a continuum model and its electric equivalent-circuit representation for ionic polymer-metal composite (IPMC) electromechanics. Smart Mater. Struct. 15(2), 378–392 (2006)

  30. 30

    Davidson J.D., Goulbourne N.C.: Boundary layer charge dynamics in ionic liquid-ionic polymer transducers. J. Appl. Phys. 109, 014909 (2011)

  31. 31

    Davidson J.D., Goulbourne N.C.: Nonlinear capacitance and electrochemical response of ionic liquid-ionic polymers. J. Appl. Phys. 109, 084901 (2011)

  32. 32

    Del~Bufalo G., Placidi L., Porfiri M.: A mixture theory framework for modeling mechanical actuation of ionic polymer metal composites. Smart Mater. Struct. 17(4), 045010 (2008)

  33. 33

    Deole U., Lumia R., Shahinpoor M., Bermudez M.: Design and test of IPMC artificial muscle microgripper. J. Micro-Nano Mechatron. 4(3), 1865–3936 (2008)

  34. 34

    Environmental Robots, Inc. : (2011).http://www.environmental-robots.com

  35. 35

    Fang B.K., Ju M.S., Lin C.C.K.: A new approach to develop ionic polymer-metal composites (IPMC) actuator: Fabrication and control for active catheter systems. Sens. Actuators A: Phys. 137(2), 321–329 (2007)

  36. 36

    Farinholt K., Leo D.J.: Modeling of electromechanical charge sensing in ionic polymer transducers. Mech. Mater. 36(5), 421–433 (2004)

  37. 37

    Farinholt K.M., Pedrazas N.A., Schluneker D.M., Burt D.W., Farrar C.R.: An energy harvesting comparison of piezoelectric and ionically conductive polymers. J. Intell. Mater. Syst. Struct. 20(5), 633–642 (2009)

  38. 38

    de~Gennes P.G., Okumura K., Shahinpoor M., Kim K.J.: Mechanoelectric effects in ionic gels. Europhys. Lett. 50(4), 513–518 (2000)

  39. 39

    Giacomello A., Porfiri M.: Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites. J. Appl. Phys. 109(8), 084903 (2011)

  40. 40

    Grodzinsky A.J., Lipshitz H., Glimcher M.J.: Electromechanical properties of articular cartilage during compression and stress relaxation. Nature 275, 448–450 (1978)

  41. 41

    Guo S., Fukuda T., Asaka K.: A new type of fish-like underwater microrobot. IEEE/ASME Trans. Mechatron. 8(1), 118–129 (2003)

  42. 42

    Gurtin M.E., Fried E., Anand L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, New York (2010)

  43. 43

    Gutta S., Lee J.S., Trabia M.B., Yim W.: Modeling of ionic polymer metal composite actuator dynamics using a large deflection beam model. Smart Mater. Struct. 18(11), 115023 (2009)

  44. 44

    Hong W., Zhao X., Suo Z.: Large deformation and electrochemistry of polyelectrolyte gels. J. Mech. Phys. Solids 58(4), 558–577 (2010)

  45. 45

    Kanno, R., Tadokoro, S., Takamori, T., Hattori, M.: Linear approximate dynamic model of ICPF actuator. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol.~1, pp. 219–225. Minneapolis, MN (1996)

  46. 46

    Kim B., Kim D.H., Jung J., Park J.O.: A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators. Smart Mater. Struct. 14(6), 1579–1585 (2005)

  47. 47

    Kim K.J., Shahinpoor M.: Ionic polymer-metal composites: II. Manufacturing techniques. Smart Mater. Struct. 12(1), 65–79 (2003)

  48. 48

    Konyo, M., Konishi, Y., Tadokoro, S., Kishima, T.: Development of velocity sensor using ionic polymer-metal composites. In: Proceedings of SPIE Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), vol. 5385, p. 307. San Diego, CA (2004)

  49. 49

    Kruusamäe K., Brunetto P., Graziani S., Punning A., Di~Pasquale G., Aabloo A.: Self-sensing ionic polymer-metal composite actuating device with patterned surface electrodes. Polymer Int. 59(3), 300–304 (2010)

  50. 50

    Lee S., Park H.C., Kim K.J.: Equivalent modeling for ionic polymer-metal composite actuators based on beam theories. Smart Mater. Struct. 14(6), 1363–1368 (2005)

  51. 51

    Lim J., Whitcomb J., Boyd J., Varghese J.: Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified Stern layer. J. Colloid Interface Sci. 305(1), 159–174 (2007)

  52. 52

    Mojarrad, M., Shahinpoor, M.: Noiseless propulsion for swimming robotic structures using polyelectrolyte ion-exchange membranes. In: Proceedings of the SPIE 1996 North American Conference on Smart Structures and Materials, vol. 2716. San Diego, CA (1996)

  53. 53

    Mura T., Koya T.: Variational Methods in Mechanics. Oxford University Press, New York (1992)

  54. 54

    Nayfeh A.H.: Introduction to Perturbation Techniques. Wiley-Interscience, New York (1981)

  55. 55

    Nemat-Nasser S.: Micromechanics of actuation of ionic polymer-metal composites. J. Appl. Phys. 92, 2899–2915 (2002)

  56. 56

    Nemat-Nasser S., Li J.Y.: Electromechanical response of ionic polymer-metal composites. J. Appl. Phys. 87, 3321–3331 (2000)

  57. 57

    Newbury K., Leo D.J.: Linear electromechanical model of ionic polymer transducers-part I: model development. J. Intell. Mater. Syst. Struct. 14(6), 333–342 (2003)

  58. 58

    Newbury K., Leo D.J.: Linear electromechanical model of ionic polymer transducers-part II: experimental validation. J. Intell. Mater. Syst. Struct. 14(6), 343–357 (2003)

  59. 59

    Park I.S., Kim S.M., Pugal D., Huang L., Tam-Chang S.W., Kim K.J.: Visualization of the cation migration in ionic polymer-metal composite under an electric field. Appl. Phys. Lett. 96(4), 043301 (2010)

  60. 60

    Peterson S.D., Porfiri M.: Energy exchange between a vortex ring and an ionic polymer metal composite. Appl. Phys. Lett. 100(11), 114102 (2012)

  61. 61

    Porfiri M.: Charge dynamics in ionic polymer metal composites. J. Appl. Phys. 104(10), 104915 (2008)

  62. 62

    Porfiri M.: An electromechanical model for sensing and actuation of ionic polymer metal composites. Smart Mater. Struct. 18(1), 015016 (2009)

  63. 63

    Porfiri M.: Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites. Phys. Rev. E 79(4), 041503 (2009)

  64. 64

    Preethichandra, D.M.G., Kaneto, K.: An easy fabrication method for artificial muscles and bending curvature sensors using ionic polymer metal composites. In: Proceedings of the First International Conference on Industrial and Information Systems, pp. 227–230. Sri Lanka (2006)

  65. 65

    Prince C., Lin W., Lin J., Peterson S.D., Porfiri M.: Temporally-resolved hydrodynamics in the vicinity of a vibrating ionic polymer metal composite. J. Appl. Phys. 107(9), 094908 (2010)

  66. 66

    Pugal D., Jung K., Aabloo A., Kim K.J.: Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives. Polymer Int. 59(3), 279–289 (2010)

  67. 67

    Reddy J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, 2nd edn. Boca Raton (2004)

  68. 68

    Shahinpoor M.: Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochimica Acta 48(14–16), 2343–2353 (2003)

  69. 69

    Shahinpoor M., Bar-Cohen Y., Simpson J.O., Smith J.: Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart Mater. Struct. 7(6), R15–R30 (1998)

  70. 70

    Shahinpoor M., Kim K.J.: Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 10(4), 819–833 (2001)

  71. 71

    Shahinpoor M., Kim K.J.: Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 13(6), 1362–1388 (2004)

  72. 72

    Shahinpoor M., Kim K.J.: Ionic polymer-metal composites: IV. Industrial and medical applications. Smart Mater. Struct. 14(1), 197–214 (2005)

  73. 73

    Suo Z.: Theory of dielectric elastomers. Acta Mechanica Solida Sinica 23(6), 549–578 (2010)

  74. 74

    Suo Z., Zhao X., Greene W.H.: A nonlinear field theory of deformable dielectrics. J. Mech. Phys. Solids 56, 467–486 (2008)

  75. 75

    Timoshenko S.P., Gere J.M.: Theory of Elastic Stability. Dover, New York (2009)

  76. 76

    Timoshenko S.P., Goodier J.N.: Theory of Elasticity. 3rd edn McGraw-Hill, New York (1970)

  77. 77

    Tiwari R., Kim K.J., Kim S.M.: Ionic polymer-metal composite as energy harvesters. Smart Struct. Syst. 4(5), 549–563 (2008)

  78. 78

    Wallmersperger T., Akle B.J., Leo D.J., Kröplin B.: Electrochemical response in ionic polymer transducers: an experimental and theoretical study. Compos. Sci. Technol. 68(5), 1173–1180 (2008)

  79. 79

    Wallmersperger T., Kröplin B., Gülch R.W.: Coupled chemo-electro-mechanical formulation for ionic polymer gels-numerical and experimental investigations. Mech. Mater. 36(5–6), 411–420 (2004)

  80. 80

    Wallmersperger T., Leo D.J., Kothera C.S.: Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J. Appl. Phys. 101(2), 024912 (2007)

  81. 81

    Yagasaki K., Tamagawa H.: Experimental estimate of viscoelastic properties for ionic polymer-metal composites. Phys. Rev. E 70, 052801 (2004)

  82. 82

    Yeom S.W., Oh I.K.: A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct. 18(8), 085002 (2009)

  83. 83

    Zangrilli U., Weiland L.M.: Prediction of the ionic polymer transducer sensing of shear loading. Smart Mater. Struct. 20(9), 094013 (2011)

  84. 84

    Zienkiewicz O.C., Taylor R.L., Zhu J.Z.: The Finite Element Method: Its Basis and Fundamentals. 6th edn Elsevier Butterworth-Heinemann, New York (2005)

Download references

Author information

Correspondence to Maurizio Porfiri.

Additional information

This material is based upon work supported in part by the National Science Foundation under Grant Nos. CMMI-0745753 and CMMI-0926791 and in part by New York University SEED funding.

Communicated by Francesco dell'Isola and Samuel Forest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aureli, M., Porfiri, M. Nonlinear sensing of ionic polymer metal composites. Continuum Mech. Thermodyn. 25, 273–310 (2013). https://doi.org/10.1007/s00161-012-0253-x

Download citation

Keywords

  • Double-layer capacitance
  • Finite element analysis
  • Ionic polymer metal composite
  • Matched asymptotic expansion
  • Poisson–Nernst–Planck
  • Sensor