Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hyperbolicity in Extended Thermodynamics of Fermi and Bose gases

  • 58 Accesses

  • 17 Citations


We consider the balance system of Extended Thermodynamics with 13 Moments in the case of Fermi and Bose gases, for processes not far from equilibrium. In this case, the hyperbolicity of the differential system holds only in a neighborhood of the equilibrium state. The main aim of the paper is to evaluate the hyperbolicity region of the differential system. The knowledge of this region in the state variables is mandatory to check the admissibility of the solutions and the corresponding boundary and Cauchy data in the limit of the approximation considered. The results are obtained through numerical evaluations of the Fermi and Bose integral functions \(I^{\pm}_{n}(\alpha)\) that appear in the characteristic polynomial. Particular attention is devoted to the completely degenerate case when Fermi gas reaches the 0 K and when the Bose gas is in proximity of the transition temperature T c . In these limiting cases, the hyperbolicity requirement is lost according to previous results. In the last section we make use of the Maxwellian iteration in order to evaluate the heat conductivity and the viscosity for the degenerate Fermi and Bose gas.

This is a preview of subscription content, log in to check access.


  1. 1

    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts in Natural Philosophy, 37 (2nd edn), Springer, New York (1998)

  2. 2

    Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2001)

  3. 3

    Ruggeri, T.: The Entropy Principle: from Continuum Mechanics to Hyperbolic Systems of Balance Laws. To appear BUMI (2004)

  4. 4

    Boillat, G.: Sur l’existence et la recherche d’équations de conservation supplémentaires pour les syst émes hyperboliques. C.R. Acad. Sc. Paris, 278 A, 909 (1974). Non Linear Hyperbolic Fields and Waves in CIME Course Recent Mathematical Methods in Nonlinear Wave Propagation. T. Ruggeri (ed.), Lecture Notes in Mathematics n. 1640 Springer, Berlin, 1-47 (1996)

  5. 5

    Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics. Ann. Inst. H. Poincaré 34A, 65 (1981)

  6. 6

    W. Dreyer: Maximization of the Entropy in Non-Equilibrium. J. Phys. A: Math. Gen. 20, 6505 (1987)

  7. 7

    Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities. Continuum Mech. Thermodyn. 9, 205 (1997)

  8. 8

    Jaynes, E.T., in: Ford, W.K. (ed.) Statistical Physics. Benjamin, New York (1963)

  9. 9

    Zubarev, D.N.: Non equilibrium Statistical Mechanics. London (1974)

  10. 10

    Jaynes, E.T., in: Rosenkrantz, R.D. (ed.): Papers on Probability, Statistics, and Statistical Physics. Reidel, Dordrecht, Holland (1983)

  11. 11

    Drabold, D.A., Carlsson, A.E., Fedders, P.A., in: Skilling, J. (ed.) Maximum Entropy and Bayesian Methods, Vol. 137, Cambridge, UK (1988)

  12. 12

    Junk, M.: Domain of definition of Levermore’s Five Moments System. J. Stat. Phys., 93, 1143-1167 (1998); Dreyer, W., Junk M., Kunik, M.: On the approximation of kinetic equations by moment systems. WIAS-Preprint No 592, Berlin (2000)

  13. 13

    Ruggeri, T.: On the non-linear closure problem of moment equation. Lecture Notes of Wascom 99 - Vulcano - June 1999. World Scientific, Singapore (2001)

  14. 14

    Brini, F.: Hyperbolicity region in Extended Thermodynamics with 14 moments. Continuum Mech. Thermodyn. 13, 1-8 (2001)

  15. 15

    Ruggeri, T., Seccia, L.: Hyperbolicity and wave propagation in Extended Thermodynamics. Meccanica 24, 127-138 (1989)

  16. 16

    Ruggeri, T.: Galilean Invariance and Entropy Principle for Systems of Balance Laws. The Structure of the Extended Thermodynamics. Continuum Mech. Thermodyn. 1 3-20 (1989)

  17. 17

    McDougall, J., Stoner, E.C.: The Computation of Fermi-Dirac functions. Phil. Trans. Roy. Soc. London 237, 67-104 (1938)

  18. 18

    Robinson, J.E.: Note on the Bose-Einstein Integral Functions. Phys. Rev. 83, 678-679 (1951)

  19. 19

    Fischer, A.E., Marsden, J.E.: The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system. Commun. Math. Phys. 28, 1-38 (1972)

  20. 20

    Dingle, R.B.: Asymptotic Expansions: Their derivation and interpretation. Academic Press, New York (1973)

  21. 21

    Sommerfeld, A.: Zur Elektron entheorie der Metalle auf Grund der Fermischen Statistik. I. Teil: Allgemeines, Strömungs und Austrittsvorgänge. Z. Physik 47, 1-42 (1928)

  22. 22

    Nordheim, L.: Müller Pouillets Lehrbuch der Physik 4/4, 271. Brunswick: Vieweg (1934)

  23. 23

    Rhodes, P.: Fermi-Dirac functions of integral order. Proc. Royal Soc. A 204, 396-405 (1950)

  24. 24

    Goano, M.: Series expansions of the Fermi-Dirac integral \({\mathcal F}_j(x)\) over the entire domain of real j and x. Solid-State Elec. 36, 217-221 (1993)

  25. 25

    Goano, M.: Algorithm 745: Computation of the Complete and Incomplete Fermi-Dirac Integral. ACM Trans. Math. Softw. 21, 221-232 (1995)

  26. 26

    MacLeod, A.J.: Algorithm 779: Fermi-Dirac Functions of order −1/2, 1/2, 3/2, 5/2. ACM Trans. Math. Softw. 24, 1-12 (1998)

  27. 27

    Beer, A.C., Chase M.N., Choquard, P.F.: Extension of McDougall-Stoner tables of the Fermi-Dirac functions. Helv. Phys. Acta 28, 529-542 (1955)

  28. 28

    Blakemore, J.S.: Semiconductor Statistics. Dover, New York, (1987)

  29. 29

    Cody, W.J., Thacher, H.C.: Rational Chebyshev approximations for Fermi-Dirac integrals of orders −1/2,1/2 and 3/2 . Math. Comp. 21, 30-40 (1967). Corrigendum.: Math. Comp. 21, 525 (1967)

  30. 30

    Bednarczyk, D., Bernarczyk, J.: The Approximation of the Fermi-Dirac Integral \({\mathcal F}_{1/2}\). Phys. Lett. 64 A, 409-410 (1978)

  31. 31

    Aymerich-Humet, X., Serra-Mestres, F., Millan, J.: An analytical approximation for the Fermi-Dirac Integral \({\mathcal F}_{3/2}\). Solid-State Elec. 24, 981-982 (1981)

  32. 32

    Aymerich-Humet, X., Serra-Mestres, F., Millan, J.: A generalized approximation of the Fermi-Dirac Integrals. J. Appl. Phys. 54, 2850-2851 (1983)

  33. 33

    Van Halen, P., Pulfrey, D.L.: Accurate, short series approximations to Fermi-Dirac integrals of order −1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2. J. Appl. Phys. 57, 5271-5274 (1985) (see also Erratum, J. Appl. Phys. 59, 2264-2265 (1986))

  34. 34

    Trellakis, A., Galick, A.T., Ravaioli, U.: Rational Chebyshev approximation for the Fermi-Dirac integral \({\mathcal F}_{-3/2}(x)\). Solid-State Elec. 41, 771-773 (1997)

  35. 35

    Cloutman, L.D.: Numerical evaluation of the Fermi-Dirac integrals. Astrophysic. J. Suppl. Ser. 71, 677-699 (1989)

  36. 36

    Gautschi, W.: On the Computation of the Generalized Fermi-Dirac and Bose-Einstein Integrals. Computer Phys. Comm. 74, 233-238 (1993)

  37. 37

    Mohankumar, N.M., Natarajan, A.: The accurate evaluation of a particular Fermi-Dirac integral. Computer Phys. Comm. 101, 47-53 (1997)

  38. 38

    Wolfe, C.C.M., Holonyak, N. Jr., Stilman, G.E.: Physical properties of semiconductors. Prentice-Hall, Englewood Cliffs, N.J. (1989)

  39. 39

    Lindsay, R.B.: Introduction to physical statistics. New York, Wiley, London: Chapman & Hall, Englewood Cliffs, N.J. (1958)

  40. 40

    Landau, L., Lifchitz, E.: Physique statistique. 3 Ed. Moscou, MIR (1976)

  41. 41

    Delahaye, J.P.: Sequence Transformations. Springer, Berlin (1988)

Download references

Author information

Correspondence to T. Ruggeri.

Additional information

Received: 2 March 2004, Accepted: 26 March 2004, Published online: 25 June 2004

Correspondence to: T. Ruggeri

Communicated by G.M. Kremer

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruggeri, T., Trovato, M. Hyperbolicity in Extended Thermodynamics of Fermi and Bose gases. Continuum Mech. Thermodyn. 16, 551–576 (2004).

Download citation


  • Extended Thermodynamics
  • hyperbolic systems
  • degenerate gases