Advertisement

What is a globular cluster? An observational perspective

  • Raffaele GrattonEmail author
  • Angela Bragaglia
  • Eugenio Carretta
  • Valentina D’Orazi
  • Sara Lucatello
  • Antonio Sollima
Review Article

Abstract

Globular clusters are large and dense agglomerate of stars. At variance with smaller clusters of stars, they exhibit signs of some chemical evolution. At least for this reason, they are intermediate between open clusters and massive objects such as nuclear clusters or compact galaxies. While some facts are well established, the increasing amount of observational data are revealing a complexity that has so far defied the attempts to interpret the whole data set in a simple scenario. We review this topic focusing on the main observational features of clusters in the Milky Way and its satellites. We find that most of the observational facts related to the chemical evolution in globular clusters are described as being primarily a function of the initial mass of the clusters, tuned by further dependence on the metallicity—that mainly affects specific aspects of the nucleosynthesis processes involved—and on the environment, that likely determines the possibility of independent chemical evolution of the fragments or satellites, where the clusters form. We review the impact of multiple populations on different regions of the colour–magnitude diagram and underline the constraints related to the observed abundances of lithium, to the cluster dynamics, and to the frequency of binaries in stars of different chemical composition. We then re-consider the issues related to the mass budget and the relation between globular cluster and field stars. Any successful model of globular cluster formation should explain these facts.

Keywords

Globular clusters Open clusters The Galaxy 

Notes

Acknowledgements

This work has made use of BaSTI web tools and of TOPCAT (Taylor 2017). We thank Alessio Mucciarelli for having provided us with unpublished results, and Leo Girardi and Emanuele Dalessandro for very useful discussions. We also wish to thank Nate Bastian, Simon Campbell, Santi Cassisi, Franca D’Antona, Enrico Vesperini, and an anonymous referee for having read a draft version of the review and having provided very useful comments. Finally, we wish to thank Frank Schulz that made the many editing steps required to have this review publishable.

References

  1. Adams FC, Fatuzzo M (1996) A theory of the initial mass function for star formation in molecular clouds. Astrophys J 464:256.  https://doi.org/10.1086/177318. arXiv:astro-ph/9601139 ADSCrossRefGoogle Scholar
  2. Aguilar L, Hut P, Ostriker JP (1988) On the evolution of globular cluster systems. I. Present characteristics and rate of destruction in our Galaxy. Astrophys J 335:720–747.  https://doi.org/10.1086/166961 ADSCrossRefGoogle Scholar
  3. Ahumada JA, Lapasset E (2007) New catalogue of blue stragglers in open clusters. Astron Astrophys 463:789–797.  https://doi.org/10.1051/0004-6361:20054590 ADSCrossRefGoogle Scholar
  4. Alves-Brito A, Yong D, Meléndez J, Vásquez S, Karakas AI (2012) CNO and F abundances in the globular cluster M 22 (NGC 6656). Astron Astrophys 540:A3.  https://doi.org/10.1051/0004-6361/201118623. arXiv:1202.0797 ADSCrossRefGoogle Scholar
  5. Anthony-Twarog BJ, Laird JB, Payne D, Twarog BA (1991) Ca II H and K filter photometry on the UVBY system. I—the standard system. Astron J 101:1902–1914.  https://doi.org/10.1086/115815 ADSCrossRefGoogle Scholar
  6. Armandroff TE, Da Costa GS (1991) Metallicities for old stellar systems from Ca II triplet strengths in member giants. Astron J 101:1329–1337.  https://doi.org/10.1086/115769 ADSCrossRefGoogle Scholar
  7. Armosky BJ, Sneden C, Langer GE, Kraft RP (1994) Abundance trends among neutron capture elements in giants of globular clusters M5, M3, M13, M92, and M15. Astron J 108:1364–1374.  https://doi.org/10.1086/117158 ADSCrossRefGoogle Scholar
  8. Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the sun. Annu Rev Astron Astrophys 47:481–522.  https://doi.org/10.1146/annurev.astro.46.060407.145222. arXiv:0909.0948 ADSCrossRefGoogle Scholar
  9. Bagdonas V, Drazdauskas A, Tautvaisiene G, Smiljanic R, Chorniy Y (2018) Chemical composition of giant stars in the open cluster IC 4756. Astrophysics 615:A165.  https://doi.org/10.1051/0004-6361/201832695. arXiv:1804.01975 CrossRefGoogle Scholar
  10. Balsara DS, Bendinelli AJ, Tilley DA, Massari AR, Howk JC (2008) Simulating anisotropic thermal conduction in supernova remnants—II. Implications for the interstellar medium. Mon Not R Astron Soc 386:642–656.  https://doi.org/10.1111/j.1365-2966.2008.13121.x. arXiv:0711.2295 ADSCrossRefGoogle Scholar
  11. Banerjee S, Kroupa P (2015) The formation of NGC 3603 young starburst cluster: ‘prompt’ hierarchical assembly or monolithic starburst? Mon Not R Astron Soc 447:728–746.  https://doi.org/10.1093/mnras/stu2445. arXiv:1412.1473 ADSCrossRefGoogle Scholar
  12. Bastian N, de Mink SE (2009) The effect of stellar rotation on colour-magnitude diagrams: on the apparent presence of multiple populations in intermediate age stellar clusters. Mon Not R Astron Soc 398(1):L11–L15.  https://doi.org/10.1111/j.1745-3933.2009.00696.x. arXiv:0906.1590 ADSCrossRefGoogle Scholar
  13. Bastian N, Lardo C (2015) Globular cluster mass-loss in the context of multiple populations. Mon Not R Astron Soc 453:357–364.  https://doi.org/10.1093/mnras/stv1661. arXiv:1507.05634 ADSCrossRefGoogle Scholar
  14. Bastian N, Lardo C (2018) Multiple stellar populations in globular clusters. Annu Rev Astron Astrophys 56:83–136.  https://doi.org/10.1146/annurev-astro-081817-051839. arXiv:1712.01286 ADSCrossRefGoogle Scholar
  15. Bastian N, Strader J (2014) Constraining globular cluster formation through studies of young massive clusters—III. A lack of gas and dust in massive stellar clusters in the LMC and SMC. Mon Not R Astron Soc 443:3594–3600.  https://doi.org/10.1093/mnras/stu1407. arXiv:1407.2726 ADSCrossRefGoogle Scholar
  16. Bastian N, Lamers HJGLM, de Mink SE, Longmore SN, Goodwin SP, Gieles M (2013) Early disc accretion as the origin of abundance anomalies in globular clusters. Mon Not R Astron Soc 436:2398–2411.  https://doi.org/10.1093/mnras/stt1745. arXiv:1309.3566 ADSCrossRefGoogle Scholar
  17. Bastian N, Cabrera-Ziri I, Salaris M (2015) A general abundance problem for all self-enrichment scenarios for the origin of multiple populations in globular clusters. Mon Not R Astron Soc 449:3333–3346.  https://doi.org/10.1093/mnras/stv543. arXiv:1503.03071 ADSCrossRefGoogle Scholar
  18. Bastian N, Kamann S, Cabrera-Ziri I, Georgy C, Ekström S, Charbonnel C, de Juan OM, Usher C (2018) Extended main sequence turnoffs in open clusters as seen by Gaia—I. NGC 2818 and the role of stellar rotation. Mon Not R Astron Soc 480:3739–3746.  https://doi.org/10.1093/mnras/sty2100. arXiv:1807.10779 ADSCrossRefGoogle Scholar
  19. Baumgardt H, Hilker M (2018) A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters. Mon Not R Astron Soc 478:1520–1557.  https://doi.org/10.1093/mnras/sty1057. arXiv:1804.08359 ADSCrossRefGoogle Scholar
  20. Baumgardt H, Makino J (2003) Dynamical evolution of star clusters in tidal fields. Mon Not R Astron Soc 340:227–246.  https://doi.org/10.1046/j.1365-8711.2003.06286.x. arXiv:astro-ph/0211471 ADSCrossRefGoogle Scholar
  21. Baumgardt H, Kroupa P, Parmentier G (2008) The influence of residual gas expulsion on the evolution of the Galactic globular cluster system and the origin of the Population II halo. Mon Not R Astron Soc 384:1231–1241.  https://doi.org/10.1111/j.1365-2966.2007.12811.x. arXiv:0712.1591 ADSCrossRefGoogle Scholar
  22. Baumgardt H, Parmentier G, Gieles M, Vesperini E (2010) Evidence for two populations of Galactic globular clusters from the ratio of their half-mass to Jacobi radii. Mon Not R Astron Soc 401:1832–1838.  https://doi.org/10.1111/j.1365-2966.2009.15758.x. arXiv:0909.5696 ADSCrossRefGoogle Scholar
  23. Baumgardt H, Parmentier G, Anders P, Grebel EK (2013) The star cluster formation history of the LMC. Mon Not R Astron Soc 430:676–685.  https://doi.org/10.1093/mnras/sts667. arXiv:1207.5576 ADSCrossRefGoogle Scholar
  24. Baumgardt H, Hilker M, Sollima A, Bellini A (2019) Mean proper motions, space orbits, and velocity dispersion profiles of Galactic globular clusters derived from Gaia DR2 data. Mon Not R Astron Soc 482:5138–5155.  https://doi.org/10.1093/mnras/sty2997. arXiv:1811.01507 ADSCrossRefGoogle Scholar
  25. Beasley MA, Baugh CM, Forbes DA, Sharples RM, Frenk CS (2002) On the formation of globular cluster systems in a hierarchical Universe. Mon Not R Astron Soc 333(2):383–399.  https://doi.org/10.1046/j.1365-8711.2002.05402.x. arXiv:astro-ph/0202191 ADSCrossRefGoogle Scholar
  26. Bedin LR, Piotto G, Anderson J, Cassisi S, King IR, Momany Y, Carraro G (2004) \(\omega \) Centauri: the population puzzle goes deeper. Astrophys J Lett 605:L125–L128.  https://doi.org/10.1086/420847. arXiv:astro-ph/0403112 ADSCrossRefGoogle Scholar
  27. Behr BB (2003) Chemical abundances and rotation velocities of blue horizontal-branch stars in six globular clusters. Astrophys J Suppl 149:67–99.  https://doi.org/10.1086/377509. arXiv:astro-ph/0307178 ADSCrossRefGoogle Scholar
  28. Behr BB, Cohen JG, McCarthy JK, Djorgovski SG (1999) Striking photospheric abundance anomalies in blue horizontal-branch stars in globular cluster M13. Astrophys J Lett 517:L135–L138.  https://doi.org/10.1086/312052. arXiv:astro-ph/9903437 ADSCrossRefGoogle Scholar
  29. Behr BB, Cohen JG, McCarthy JK (2000) Rotations and abundances of blue horizontal-branch stars in globular cluster M15. Astrophys J Lett 531:L37–L40.  https://doi.org/10.1086/312524. arXiv:astro-ph/0002119 ADSCrossRefGoogle Scholar
  30. Bekki K (2010) Rotation and multiple stellar population in globular clusters. Astrophys J Lett 724:L99–L103.  https://doi.org/10.1088/2041-8205/724/1/L99. arXiv:1010.3841 ADSCrossRefGoogle Scholar
  31. Bekki K (2011) Secondary star formation within massive star clusters: origin of multiple stellar populations in globular clusters. Mon Not R Astron Soc 412:2241–2259.  https://doi.org/10.1111/j.1365-2966.2010.18047.x. arXiv:1011.5956 ADSCrossRefGoogle Scholar
  32. Bekki K, Freeman KC (2003) Formation of \(\omega \) Centauri from an ancient nucleated dwarf galaxy in the young Galactic disc. Mon Not R Astron Soc 346:L11–L15.  https://doi.org/10.1046/j.1365-2966.2003.07275.x. arXiv:astro-ph/0310348 ADSCrossRefGoogle Scholar
  33. Bekki K, Tsujimoto T (2016) Formation of anomalous globular clusters with metallicity spreads: a unified picture. Astrophys J 831:70.  https://doi.org/10.3847/0004-637X/831/1/70 ADSCrossRefGoogle Scholar
  34. Bekki K, Campbell SW, Lattanzio JC, Norris JE (2007) Origin of abundance inhomogeneity in globular clusters. Mon Not R Astron Soc 377:335–351.  https://doi.org/10.1111/j.1365-2966.2007.11606.x. arXiv:astro-ph/0702289 ADSCrossRefGoogle Scholar
  35. Bellazzini M, Fusi Pecci F, Messineo M, Monaco L, Rood RT (2002) Deep Hubble Space Telescope WFPC2 photometry of NGC 288. I. Binary systems and blue stragglers. Astron J 123:1509–1527.  https://doi.org/10.1086/339222. arXiv:astro-ph/0112343 ADSCrossRefGoogle Scholar
  36. Bellazzini M, Ibata RA, Chapman SC, Mackey AD, Monaco L, Irwin MJ, Martin NF, Lewis GF, Dalessandro E (2008) The nucleus of the Sagittarius dSph galaxy and M54: a window on the process of galaxy nucleation. Astron J 136:1147–1170.  https://doi.org/10.1088/0004-6256/136/3/1147. arXiv:0807.0105 ADSCrossRefGoogle Scholar
  37. Bellazzini M, Bragaglia A, Carretta E, Gratton RG, Lucatello S, Catanzaro G, Leone F (2012) Na-O anticorrelation and HB. IX. Kinematics of the program clusters A link between systemic rotation and HB morphology? Astron Astrophys 538:A18.  https://doi.org/10.1051/0004-6361/201118056. arXiv:1111.2688 ADSCrossRefGoogle Scholar
  38. Bellini A, Vesperini E, Piotto G, Milone AP, Hong J, Anderson J, van der Marel RP, Bedin LR, Cassisi S, D’Antona F, Marino AF, Renzini A (2015) The Hubble Space Telescope UV legacy survey of galactic globular clusters: the internal kinematics of the multiple stellar populations in NGC 2808. Astrophys J Lett 810:L13.  https://doi.org/10.1088/2041-8205/810/1/L13. arXiv:1508.01804 ADSCrossRefGoogle Scholar
  39. Bellini A, Milone AP, Anderson J, Marino AF, Piotto G, van der Marel RP, Bedin LR, King IR (2017) The state-of-the-art HST astro-photometric analysis of the core of \(\omega \) Centauri. III. The main sequence’s multiple populations galore. Astrophys J 844:164.  https://doi.org/10.3847/1538-4357/aa7b7e. arXiv:1706.07063 ADSCrossRefGoogle Scholar
  40. Benitez N, Dupke R, Moles M, Sodre L, Cenarro J, Marin-Franch A, Taylor K, Cristobal D, Fernandez-Soto A, Mendes de Oliveira C, Cepa-Nogue J, Abramo LR, Alcaniz JS, Overzier R, Hernandez-Monteagudo C, Alfaro EJ, Kanaan A, Carvano JM, Reis RRR, Martinez Gonzalez E, Ascaso B, Ballesteros F, Xavier HS, Varela J, Ederoclite A, Vazquez Ramio H, Broadhurst T, Cypriano E, Angulo R, Diego JM, Zandivarez A, Diaz E, Melchior P, Umetsu K, Spinelli PF, Zitrin A, Coe D, Yepes G, Vielva P, Sahni V, Marcos-Caballero A, Shu Kitaura F, Maroto AL, Masip M, Tsujikawa S, Carneiro S, Gonzalez Nuevo J, Carvalho GC, Reboucas MJ, Carvalho JC, Abdalla E, Bernui A, Pigozzo C, Ferreira EGM, Chandrachani Devi N, Bengaly CAP Jr, Campista M, Amorim A, Asari NV, Bongiovanni A, Bonoli S, Bruzual G, Cardiel N, Cava A, Cid Fernandes R, Coelho P, Cortesi A, Delgado RG, Diaz Garcia L, Espinosa JMR, Galliano E, Gonzalez-Serrano JI, Falcon-Barroso J, Fritz J, Fernandes C, Gorgas J, Hoyos C, Jimenez-Teja Y, Lopez-Aguerri JA, Lopez-San Juan C, Mateus A, Molino A, Novais P, OMill A, Oteo I, Perez-Gonzalez PG, Poggianti B, Proctor R, Ricciardelli E, Sanchez-Blazquez P, Storchi-Bergmann T, Telles E, Schoennell W, Trujillo N, Vazdekis A, Viironen K, Daflon S, Aparicio-Villegas T, Rocha D, Ribeiro T, Borges M, Martins SL, Marcolino W, Martinez-Delgado D, Perez-Torres MA, Siffert BB, Calvao MO, Sako M, Kessler R, Alvarez-Candal A, De Pra M, Roig F, Lazzaro D, Gorosabel J, Lopes de Oliveira R, Lima-Neto GB, Irwin J, Liu JF, Alvarez E, Balmes I, Chueca S, Costa-Duarte MV, da Costa AA, Dantas MLL, Diaz AY, Fabregat J, Ferrari F, Gavela B, Gracia SG, Gruel N, Gutierrez JLL, Guzman R, Hernandez-Fernandez JD, Herranz D, Hurtado-Gil L, Jablonsky F, Laporte R, Le Tiran LL, Licandro J, Lima M, Martin E, Martinez V, Montero JJC, Penteado P, Pereira CB, Peris V, Quilis V, Sanchez-Portal M, Soja AC, Solano E, Torra J, Valdivielso L (2014) J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey. arXiv e-prints arXiv:1403.5237
  41. Bertelli G, Nasi E, Girardi L, Chiosi C, Zoccali M, Gallart C (2003) Testing intermediate-age stellar evolution models with VLT photometry of large magellanic cloud clusters. III. Padova results. Astrophys J 125:770–784.  https://doi.org/10.1086/345961. arXiv:astro-ph/0211169 ADSCrossRefGoogle Scholar
  42. Beuther H, Churchwell EB, McKee CF, Tan JC (2007) The formation of massive stars. Protostars and planets V, pp 165–180. arXiv:astro-ph/0602012
  43. Bloecker T (1995) Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution. Astron Astrophys 297:727ADSGoogle Scholar
  44. Boberg OM, Friel ED, Vesperini E (2015) Chemical abundances in NGC 5053: a very metal-poor and dynamically complex globular cluster. Astrophys J 804:109.  https://doi.org/10.1088/0004-637X/804/2/109. arXiv:1504.01791 ADSCrossRefGoogle Scholar
  45. Boberg OM, Friel ED, Vesperini E (2016) Chemical abundances in NGC 5024 (M53): a mostly first generation globular cluster. Astrophys J 824:5.  https://doi.org/10.3847/0004-637X/824/1/5 ADSCrossRefGoogle Scholar
  46. Böcek Topcu G, Afşar M, Sneden C (2016) The chemical compositions and evolutionary status of red giants in the open cluster NGC 6940. Mon Not R Astron Soc 463:580–597.  https://doi.org/10.1093/mnras/stw1974 ADSCrossRefGoogle Scholar
  47. Bodenheimer P, Tenorio-Tagle G, Yorke HW (1979) The gas dynamics of H II regions. II. Two-dimensional axisymmetric calculations. Astrophys J 233:85–96.  https://doi.org/10.1086/157368. arXiv:1906.09137 ADSCrossRefGoogle Scholar
  48. Bolte M (1992) CCD photometry in the globular cluster NGC 288. I. Blue stragglers and main-sequence binary stars. Astrophys J Suppl 82:145.  https://doi.org/10.1086/191712 ADSCrossRefGoogle Scholar
  49. Bonatto C, Chies-Santos AL, Coelho PRT, Varela J, Larsen SS, Javier Cenarro A, San Roman I, Marín-Franch A, Mendes de Oliveira C, Molino A, Ederoclite A, Cortesi A, López-Sanjuan C, Cristóbal-Hornillos D, Vázquez Ramió H, Sodré L, Sampedro L, Costa-Duarte MV, Novais PM, Dupke R, Overzier RA, Ribeiro T, Santos WA, Schoennell W (2019) J-PLUS: a wide-field multi-band study of the M 15 globular cluster. Evidence of multiple stellar populations in the RGB. Astron Astrophys 622:A179.  https://doi.org/10.1051/0004-6361/201732441. arXiv:1804.03966 CrossRefGoogle Scholar
  50. Bonnell IA, Bate MR, Vine SG (2003) The hierarchical formation of a stellar cluster. Mon Not R Astron Soc 343:413–418.  https://doi.org/10.1046/j.1365-8711.2003.06687.x. arXiv:astro-ph/0305082 ADSCrossRefGoogle Scholar
  51. Bonnell IA, Smith RJ, Clark PC, Bate MR (2011) The efficiency of star formation in clustered and distributed regions. Mon Not R Astron Soc 410:2339–2346.  https://doi.org/10.1111/j.1365-2966.2010.17603.x. arXiv:1009.1152 ADSCrossRefGoogle Scholar
  52. Bragaglia A, Carretta E, Gratton R, D’Orazi V, Cassisi S, Lucatello S (2010a) Helium in first and second-generation stars in globular clusters from spectroscopy of red giants. Astron Astrophys 519:A60.  https://doi.org/10.1051/0004-6361/201014702. arXiv:1005.2659 ADSCrossRefGoogle Scholar
  53. Bragaglia A, Carretta E, Gratton RG, Lucatello S, Milone A, Piotto G, D’Orazi V, Cassisi S, Sneden C, Bedin LR (2010b) X-shooter observations of main-sequence stars in the globular cluster NGC 2808: first chemical tagging of a He-normal and a He-rich dwarf. Astrophys J Lett 720:L41–L45.  https://doi.org/10.1088/2041-8205/720/1/L41. arXiv:1007.5299 ADSCrossRefGoogle Scholar
  54. Bragaglia A, Gratton RG, Carretta E, D’Orazi V, Sneden C, Lucatello S (2012) Searching for multiple stellar populations in the massive, old open cluster Berkeley 39. Astron Astrophys 548:A122.  https://doi.org/10.1051/0004-6361/201220366. arXiv:1211.1142 ADSCrossRefGoogle Scholar
  55. Bragaglia A, Sneden C, Carretta E, Gratton RG, Lucatello S, Bernath PF, Brooke JSA, Ram RS (2014) Searching for chemical signatures of multiple stellar populations in the old, massive open cluster NGC 6791. Astrophys J 796:68.  https://doi.org/10.1088/0004-637X/796/1/68. arXiv:1409.8283 ADSCrossRefGoogle Scholar
  56. Bragaglia A, Carretta E, Sollima A, Donati P, D’Orazi V, Gratton RG, Lucatello S, Sneden C (2015) NGC 6139: a normal massive globular cluster, or a first-generation dominated cluster? Clues from the light elements. Astron Astrophys 583:A69.  https://doi.org/10.1051/0004-6361/201526592. arXiv:1507.07562 ADSCrossRefGoogle Scholar
  57. Bragaglia A, Carretta E, D’Orazi V, Sollima A, Donati P, Gratton RG, Lucatello S (2017) NGC 6535: the lowest mass Milky Way globular cluster with a Na–O anti-correlation? Cluster mass and age in the multiple population context. Astron Astrophys 607:A44.  https://doi.org/10.1051/0004-6361/201731526. arXiv:1708.07705 ADSCrossRefGoogle Scholar
  58. Bragaglia A, Fu X, Mucciarelli A, Andreuzzi G, Donati P (2018) The chemical composition of the oldest nearby open cluster Ruprecht 147. Astron Astrophys 619:A176.  https://doi.org/10.1051/0004-6361/201833888. arXiv:1809.06868 ADSCrossRefGoogle Scholar
  59. Briley MM, Cohen JG (2001) Calibration of the CH and CN variations among main-sequence stars in M71 and in M13. Astron J 122:242–247.  https://doi.org/10.1086/321115. arXiv:astro-ph/0104099 ADSCrossRefGoogle Scholar
  60. Briley MM, Cohen JG, Stetson PB (2004) The chemical inhomogeneity of faint M13 stars: carbon and nitrogen abundances. Astron J 127:1579–1587.  https://doi.org/10.1086/382100. arXiv:astro-ph/0312315 ADSCrossRefGoogle Scholar
  61. Brodie JP, Strader J (2006) Extragalactic globular clusters and galaxy formation. Annu Rev Astron Astrophys 44:193–267.  https://doi.org/10.1146/annurev.astro.44.051905.092441. arXiv:astro-ph/0602601 ADSCrossRefGoogle Scholar
  62. Çalışkan Ş, Christlieb N, Grebel EK (2012) Abundance analysis of the outer halo globular cluster Palomar 14. Astron Astrophys 537:A83.  https://doi.org/10.1051/0004-6361/201016355. arXiv:1110.5151 ADSCrossRefGoogle Scholar
  63. Cabrera-Ziri I, Bastian N, Longmore SN, Brogan C, Hollyhead K, Larsen SS, Whitmore B, Johnson K, Chandar R, Henshaw JD, Davies B, Hibbard JE (2015) Constraining globular cluster formation through studies of young massive clusters—V. ALMA observations of clusters in the Antennae. Mon Not R Astron Soc 448:2224–2231.  https://doi.org/10.1093/mnras/stv163. arXiv:1501.05657 ADSCrossRefGoogle Scholar
  64. Cabrera-Ziri I, Lardo C, Mucciarelli A (2019) Constant light element abundances suggest that the extended P1 in NGC 2808 is not a consequence of CNO-cycle nucleosynthesis. Mon Not R Astron Soc.  https://doi.org/10.1093/mnras/stz707. arXiv:1903.03621 ADSCrossRefGoogle Scholar
  65. Calura F, Few CG, Romano D, D’Ercole A (2015) Feedback from massive stars and gas expulsion from proto-globular clusters. Astrophys J Lett 814:L14.  https://doi.org/10.1088/2041-8205/814/1/L14. arXiv:1511.03277 ADSCrossRefGoogle Scholar
  66. Calura F, D’Ercole A, Vesperini E, Vanzella E, Sollima A (2019) Formation of second-generation stars in globular clusters. Mon Not R Astron Soc 489:3269–3284.  https://doi.org/10.1093/mnras/stz2055. arXiv:1906.09137 ADSCrossRefGoogle Scholar
  67. Cameron AGW, Fowler WA (1971) Lithium and the s-process in red-giant stars. Astrophys J 164:111.  https://doi.org/10.1086/150821 ADSCrossRefGoogle Scholar
  68. Campbell SW, Lattanzio JC, Elliott LM (2006) Are there radical cyanogen abundance differences between galactic globular cluster RGB and AGB stars? Mem Soc Astron Ital 77:864. arXiv:astro-ph/0603779
  69. Campbell SW, D’Orazi V, Yong D, Constantino TN, Lattanzio JC, Stancliffe RJ, Angelou GC, Wylie-de Boer EC, Grundahl F (2013) Sodium content as a predictor of the advanced evolution of globular cluster stars. Nature 498:198–200.  https://doi.org/10.1038/nature12191. arXiv:1305.7090 ADSCrossRefGoogle Scholar
  70. Campbell SW, MacLean BT, D’Orazi V, Casagrande L, de Silva GM, Yong D, Cottrell PL, Lattanzio JC (2017) NGC 6752 AGB stars revisited. I. Improved AGB temperatures remove apparent overionisation of Fe I. Astron Astrophys 605:A98.  https://doi.org/10.1051/0004-6361/201731101. arXiv:1707.02840 CrossRefGoogle Scholar
  71. Cantat-Gaudin T, Vallenari A, Zaggia S, Bragaglia A, Sordo R, Drew JE, Eisloeffel J, Farnhill HJ, Gonzalez-Solares E, Greimel R, Irwin MJ, Kupcu-Yoldas A, Jordi C, Blomme R, Sampedro L, Costado MT, Alfaro E, Smiljanic R, Magrini L, Donati P, Friel ED, Jacobson H, Abbas U, Hatzidimitriou D, Spagna A, Vecchiato A, Balaguer-Nunez L, Lardo C, Tosi M, Pancino E, Klutsch A, Tautvaisiene G, Drazdauskas A, Puzeras E, Jiménez-Esteban F, Maiorca E, Geisler D, San Roman I, Villanova S, Gilmore G, Randich S, Bensby T, Flaccomio E, Lanzafame A, Recio-Blanco A, Damiani F, Hourihane A, Jofré P, de Laverny P, Masseron T, Morbidelli L, Prisinzano L, Sacco GG, Sbordone L, Worley CC (2014) The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705. Astron Astrophys 569:A17.  https://doi.org/10.1051/0004-6361/201423851. arXiv:1407.1510 CrossRefGoogle Scholar
  72. Carballo-Bello JA, Sollima A, Martínez-Delgado D, Pila-Díez B, Leaman R, Fliri J, Muñoz RR, Corral-Santana JM (2014) A search for stellar tidal debris of defunct dwarf galaxies around globular clusters in the inner Galactic halo. Mon Not R Astron Soc 445:2971–2993.  https://doi.org/10.1093/mnras/stu1949. arXiv:1409.7390 ADSCrossRefGoogle Scholar
  73. Carretta E (2006) Abundances in Red Giant Stars of NGC 2808 and correlations between chemical anomalies and global parameters in globular clusters. Astron J 131:1766–1783.  https://doi.org/10.1086/499565. arXiv:astro-ph/0511144 ADSCrossRefGoogle Scholar
  74. Carretta E (2014) Three discrete groups with homogeneous chemistry along the Red Giant Branch in the globular cluster NGC 2808. Astrophys J Lett 795:L28.  https://doi.org/10.1088/2041-8205/795/2/L28. arXiv:1410.3476 ADSCrossRefGoogle Scholar
  75. Carretta E (2015) Five groups of red giants with distinct chemical composition in the globular cluster NGC 2808. Astrophys J 810:148.  https://doi.org/10.1088/0004-637X/810/2/148. arXiv:1507.07553 ADSCrossRefGoogle Scholar
  76. Carretta E (2016) Spectroscopic evidence of multiple stellar populations in globular clusters. arXiv e-prints. arXiv:1611.04728
  77. Carretta E (2019) Empirical estimates of the Na–O anti-correlation in 95 Galactic globular clusters. Astron Astrophys 624:A24.  https://doi.org/10.1051/0004-6361/201935110. arXiv:1903.04494 ADSCrossRefGoogle Scholar
  78. Carretta E, Bragaglia A (2018) Observing multiple populations in globular clusters with the ESO archive: NGC 6388 reloaded. Astron Astrophys 614:A109.  https://doi.org/10.1051/0004-6361/201832660. arXiv:1802.06787 ADSCrossRefGoogle Scholar
  79. Carretta E, Bragaglia A, Cacciari C, Rossetti E (2003) Proton capture elements in the globular cluster NGC 2808. I. First detection of large variations in sodium abundances along the Red Giant Branch. Astron Astrophys 410:143–154.  https://doi.org/10.1051/0004-6361:20031315. arXiv:astro-ph/0309021 ADSCrossRefGoogle Scholar
  80. Carretta E, Bragaglia A, Cacciari C (2004) Star-to-Star Na and O abundance variations along the Red Giant Branch in NGC 2808. Astrophys J Lett 610:L25–L28.  https://doi.org/10.1086/423034. arXiv:astro-ph/0406119 ADSCrossRefGoogle Scholar
  81. Carretta E, Gratton RG, Lucatello S, Bragaglia A, Bonifacio P (2005) Abundances of C, N, O in slightly evolved stars in the globular clusters NGC 6397, NGC 6752 and 47 Tuc. Astron Astrophys 433:597–611.  https://doi.org/10.1051/0004-6361:20041892. arXiv:astro-ph/0411241 ADSCrossRefGoogle Scholar
  82. Carretta E, Bragaglia A, Gratton RG, Leone F, Recio-Blanco A, Lucatello S (2006) Na–O anticorrelation and HB. I. The Na–O anticorrelation in NGC 2808. Astron Astrophys 450:523–533.  https://doi.org/10.1051/0004-6361:20054369. arXiv:astro-ph/0511833 ADSCrossRefGoogle Scholar
  83. Carretta E, Bragaglia A, Gratton RG, Lucatello S, Momany Y (2007) Na–O anticorrelation and horizontal branches. II. The Na–O anticorrelation in the globular cluster NGC 6752. Astron Astrophys 464:927–937.  https://doi.org/10.1051/0004-6361:20065208. arXiv:astro-ph/0701174 ADSCrossRefGoogle Scholar
  84. Carretta E, Bragaglia A, Gratton R, D’Orazi V, Lucatello S (2009a) Intrinsic iron spread and a new metallicity scale for globular clusters. Astron Astrophys 508:695–706.  https://doi.org/10.1051/0004-6361/200913003. arXiv:0910.0675 ADSCrossRefGoogle Scholar
  85. Carretta E, Bragaglia A, Gratton R, Lucatello S (2009b) Na–O anticorrelation and HB. VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra. Astron Astrophys 505:139–155.  https://doi.org/10.1051/0004-6361/200912097. arXiv:0909.2941 ADSCrossRefGoogle Scholar
  86. Carretta E, Bragaglia A, Gratton RG, Lucatello S, Catanzaro G, Leone F, Bellazzini M, Claudi R, D’Orazi V, Momany Y, Ortolani S, Pancino E, Piotto G, Recio-Blanco A, Sabbi E (2009c) Na–O anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra. Astron Astrophys 505:117–138.  https://doi.org/10.1051/0004-6361/200912096. arXiv:0909.2938 ADSCrossRefGoogle Scholar
  87. Carretta E, Bragaglia A, Gratton RG, Lucatello S, Bellazzini M, Catanzaro G, Leone F, Momany Y, Piotto G, D’Orazi V (2010a) Detailed abundances of a large sample of giant stars in M 54 and in the Sagittarius nucleus. Astron Astrophys 520:A95.  https://doi.org/10.1051/0004-6361/201014924. arXiv:1006.5866 ADSCrossRefGoogle Scholar
  88. Carretta E, Bragaglia A, Gratton RG, Lucatello S, Bellazzini M, Catanzaro G, Leone F, Momany Y, Piotto G, D’Orazi V (2010b) M54 + Sagittarius = \(\omega \) Centauri. Astrophys J Lett 714:L7–L11.  https://doi.org/10.1088/2041-8205/714/1/L7. arXiv:1002.1963 ADSCrossRefGoogle Scholar
  89. Carretta E, Bragaglia A, Gratton RG, Recio-Blanco A, Lucatello S, D’Orazi V, Cassisi S (2010c) Properties of stellar generations in globular clusters and relations with global parameters. Astron Astrophys 516:A55.  https://doi.org/10.1051/0004-6361/200913451. arXiv:1003.1723 ADSCrossRefGoogle Scholar
  90. Carretta E, Bragaglia A, Gratton R, D’Orazi V, Lucatello S (2011a) A Strömgren view of the multiple populations in globular clusters. Astron Astrophys 535:A121.  https://doi.org/10.1051/0004-6361/201117180. arXiv:1109.3199 ADSCrossRefGoogle Scholar
  91. Carretta E, Lucatello S, Gratton RG, Bragaglia A, D’Orazi V (2011b) Multiple stellar populations in the globular cluster NGC 1851. Astron Astrophys 533:A69.  https://doi.org/10.1051/0004-6361/201117269. arXiv:1106.3174 ADSCrossRefGoogle Scholar
  92. Carretta E, Bragaglia A, Gratton RG, Lucatello S, D’Orazi V (2012) Chemical tagging of three distinct populations of red giants in the globular cluster NGC 6752. Astrophys J Lett 750:L14.  https://doi.org/10.1088/2041-8205/750/1/L14. arXiv:1204.0259 ADSCrossRefGoogle Scholar
  93. Carretta E, Bragaglia A, Gratton RG, Lucatello S, D’Orazi V, Bellazzini M, Catanzaro G, Leone F, Momany Y, Sollima A (2013a) NGC 362: another globular cluster with a split red giant branch. Astron Astrophys 557:A138.  https://doi.org/10.1051/0004-6361/201321905. arXiv:1307.4085 ADSCrossRefGoogle Scholar
  94. Carretta E, Gratton RG, Bragaglia A, D’Orazi V, Lucatello S, Sollima A, Sneden C (2013b) Potassium in globular cluster stars: comparing normal clusters to the peculiar cluster NGC 2419. Astrophys J 769:40.  https://doi.org/10.1088/0004-637X/769/1/40. arXiv:1303.4740 ADSCrossRefGoogle Scholar
  95. Carretta E, Bragaglia A, Gratton RG, D’Orazi V, Lucatello S, Sollima A (2014) Terzan 8: a Sagittarius-flavoured globular cluster. Astron Astrophys 561:A87.  https://doi.org/10.1051/0004-6361/201322676. arXiv:1311.2589 ADSCrossRefGoogle Scholar
  96. Carretta E, Bragaglia A, Gratton RG, D’Orazi V, Lucatello S, Sollima A, Momany Y, Catanzaro G, Leone F (2015) The normal chemistry of multiple stellar populations in the dense globular cluster NGC 6093 (M 80). Astron Astrophys 578:A116.  https://doi.org/10.1051/0004-6361/201525951. arXiv:1503.03074 ADSCrossRefGoogle Scholar
  97. Carretta E, Bragaglia A, Lucatello S, D’Orazi V, Gratton RG, Donati P, Sollima A, Sneden C (2017) Chemical characterisation of the globular cluster NGC 5634 associated to the Sagittarius dwarf spheroidal galaxy. Astron Astrophys 600:A118.  https://doi.org/10.1051/0004-6361/201630004. arXiv:1701.03116 ADSCrossRefGoogle Scholar
  98. Carretta E, Bragaglia A, Lucatello S, Gratton RG, D’Orazi V, Sollima A (2018) Aluminium abundances in five discrete stellar populations of the globular cluster NGC 2808. Astron Astrophys 615:A17.  https://doi.org/10.1051/0004-6361/201732324. arXiv:1801.09689 ADSCrossRefGoogle Scholar
  99. Cassisi S, Salaris M (1997) A critical investigation on the discrepancy between the observational and the theoretical red giant luminosity function ‘bump’. Mon Not R Astron Soc 285(3):593–603.  https://doi.org/10.1093/mnras/285.3.593. arXiv:astro-ph/9702029 ADSCrossRefGoogle Scholar
  100. Cassisi S, Marín-Franch A, Salaris M, Aparicio A, Monelli M, Pietrinferni A (2011) The magnitude difference between the main sequence turn off and the red giant branch bump in Galactic globular clusters. Astron Astrophys 527:A59.  https://doi.org/10.1051/0004-6361/201016066. arXiv:1012.0419 ADSCrossRefGoogle Scholar
  101. Cassisi S, Salaris M, Pietrinferni A, Vink JS, Monelli M (2014) On the missing second generation AGB stars in NGC 6752. Astron Astrophys 571:A81.  https://doi.org/10.1051/0004-6361/201424540. arXiv:1410.3599 ADSCrossRefGoogle Scholar
  102. Cassisi S, Salaris M, Pietrinferni A, Hyder D (2017) On the determination of the He abundance distribution in globular clusters from the width of the main sequence. Mon Not R Astron Soc 464:2341–2348.  https://doi.org/10.1093/mnras/stw2579. arXiv:1610.01755 ADSCrossRefGoogle Scholar
  103. Catelan M (2009) Horizontal branch stars: the interplay between observations and theory, and insights into the formation of the Galaxy. Astrophys Space Sci 320:261–309.  https://doi.org/10.1007/s10509-009-9987-8. arXiv:astro-ph/0507464 ADSCrossRefzbMATHGoogle Scholar
  104. Chabrier G, Hennebelle P, Charlot S (2014) Variations of the Stellar initial mass function in the progenitors of massive early-type Galaxies and in extreme starburst environments. Astrophys J 796:75.  https://doi.org/10.1088/0004-637X/796/2/75. arXiv:1409.8466 ADSCrossRefGoogle Scholar
  105. Chantereau W, Salaris M, Bastian N, Martocchia S (2019) Helium enrichment in intermediate-age Magellanic Clouds clusters: towards an ubiquity of multiple stellar populations? Mon Not R Astron Soc 484:5236–5244.  https://doi.org/10.1093/mnras/stz378. arXiv:1902.01806 ADSCrossRefGoogle Scholar
  106. Charbonnel C, Chantereau W, Krause M, Primas F, Wang Y (2014) Are there any first-generation stars in globular clusters today? Astron Astrophys 569:L6.  https://doi.org/10.1051/0004-6361/201424804. arXiv:1410.3967 ADSCrossRefGoogle Scholar
  107. Cohen JG (2004) Palomar 12 as a part of the Sagittarius stream: the evidence from abundance ratios. Astron J 127:1545–1554.  https://doi.org/10.1086/382104. arXiv:astro-ph/0311187 ADSCrossRefGoogle Scholar
  108. Cohen JG, Briley MM, Stetson PB (2002) Carbon and nitrogen abundances in stars at the base of the red giant branch in M5. Astron J 123:2525–2540.  https://doi.org/10.1086/340179. arXiv:astro-ph/0112199 ADSCrossRefGoogle Scholar
  109. Cordero MJ, Pilachowski CA, Johnson CI, McDonald I, Zijlstra AA, Simmerer J (2014) Detailed abundances for a large sample of Giant Stars in the Globular Cluster 47 Tucanae (NGC 104). Astrophys J 780:94.  https://doi.org/10.1088/0004-637X/780/1/94. arXiv:1311.1541 ADSCrossRefGoogle Scholar
  110. Cordero MJ, Hénault-Brunet V, Pilachowski CA, Balbinot E, Johnson CI, Varri AL (2017) Differences in the rotational properties of multiple stellar populations in M13: a faster rotation for the ‘extreme’ chemical subpopulation. Mon Not R Astron Soc 465:3515–3535.  https://doi.org/10.1093/mnras/stw2812. arXiv:1610.09374 ADSCrossRefGoogle Scholar
  111. Cowan JJ, Sneden C, Lawler JE, Aprahamian A, Wiescher M, Langanke K, Martínez-Pinedo G, Thielemann FK (2019) Making the Heaviest Elements in the Universe: A Review of the Rapid Neutron Capture Process. arXiv e-prints. arXiv:1901.01410
  112. Cristallo S, Straniero O, Gallino R, Piersanti L, Domínguez I, Lederer MT (2009) Evolution, nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. Astrophys J 696:797–820.  https://doi.org/10.1088/0004-637X/696/1/797. arXiv:0902.0243 ADSCrossRefGoogle Scholar
  113. Cristallo S, Straniero O, Piersanti L, Gobrecht D (2015) Evolution, nucleosynthesis, and yields of AGB stars at different metallicities. III. Intermediate-mass models, revised low-mass models, and the ph-FRUITY interface. Astrophys J Suppl Ser 219(2):40.  https://doi.org/10.1088/0067-0049/219/2/40. arXiv:1507.07338 ADSCrossRefGoogle Scholar
  114. Cummings JD, Kalirai JS, Tremblay PE, Ramirez-Ruiz E, Choi J (2018) The white dwarf initial-final mass relation for progenitor stars from 0.85 to 7.5 M \(_{\odot }\). Astrophys J 866:21.  https://doi.org/10.3847/1538-4357/aadfd6. arXiv:1809.01673 ADSCrossRefGoogle Scholar
  115. Cunha K, Smith VV, Johnson JA, Bergemann M, Mészáros S, Shetrone MD, Souto D, Allende Prieto C, Schiavon RP, Frinchaboy P, Zasowski G, Bizyaev D, Holtzman J, García Pérez AE, Majewski SR, Nidever D, Beers T, Carrera R, Geisler D, Gunn J, Hearty F, Ivans I, Martell S, Pinsonneault M, Schneider DP, Sobeck J, Stello D, Stassun KG, Skrutskie M, Wilson JC (2015) Sodium and oxygen abundances in the open cluster NGC 6791 from APOGEE H-band spectroscopy. Astrophys J Lett 798:L41.  https://doi.org/10.1088/2041-8205/798/2/L41. arXiv:1411.2034 ADSCrossRefGoogle Scholar
  116. Da Costa GS (2016) The Ca II triplet in red giant spectra: [Fe/H] determinations and the role of [Ca/Fe]. Mon Not R Astron Soc 455:199–206.  https://doi.org/10.1093/mnras/stv2315. arXiv:1510.00766 ADSCrossRefGoogle Scholar
  117. Da Costa GS, Held EV, Saviane I (2014) NGC 5824: a luminous outer halo globular cluster with an intrinsic abundance spread. Mon Not R Astron Soc 438:3507–3520.  https://doi.org/10.1093/mnras/stt2467. arXiv:1312.5796 ADSCrossRefGoogle Scholar
  118. Dabringhausen J, Hilker M, Kroupa P (2008) From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems. Mon Not R Astron Soc 386:864–886.  https://doi.org/10.1111/j.1365-2966.2008.13065.x. arXiv:0802.0703 ADSCrossRefGoogle Scholar
  119. Dale JE, Bonnell I (2011) Ionizing feedback from massive stars in massive clusters: fake bubbles and untriggered star formation. Mon Not R Astron Soc 414:321–328.  https://doi.org/10.1111/j.1365-2966.2011.18392.x. arXiv:1103.1532 ADSCrossRefGoogle Scholar
  120. Dalessandro E, Salaris M, Ferraro FR, Cassisi S, Lanzoni B, Rood RT, Fusi Pecci F, Sabbi E (2011) The peculiar horizontal branch of NGC 2808. Mon Not R Astron Soc 410:694–704.  https://doi.org/10.1111/j.1365-2966.2010.17479.x. arXiv:1008.4478 ADSCrossRefGoogle Scholar
  121. Dalessandro E, Salaris M, Ferraro FR, Mucciarelli A, Cassisi S (2013) The horizontal branch in the UV colour-magnitude diagrams—II. The case of M3, M13 and M79. Mon Not R Astron Soc 430:459–471.  https://doi.org/10.1093/mnras/sts644. arXiv:1212.4419 ADSCrossRefGoogle Scholar
  122. Dalessandro E, Massari D, Bellazzini M, Miocchi P, Mucciarelli A, Salaris M, Cassisi S, Ferraro FR, Lanzoni B (2014) First evidence of fully spatially mixed first and second generations in globular clusters: the case of NGC 6362. Astrophys J Lett 791:L4.  https://doi.org/10.1088/2041-8205/791/1/L4. arXiv:1407.0484 ADSCrossRefGoogle Scholar
  123. Dalessandro E, Lapenna E, Mucciarelli A, Origlia L, Ferraro FR, Lanzoni B (2016) Multiple populations in the old and massive small magellanic cloud globular cluster NGC 121. Astrophys J 829:77.  https://doi.org/10.3847/0004-637X/829/2/77. arXiv:1607.05736 ADSCrossRefGoogle Scholar
  124. Dalessandro E, Cadelano M, Vesperini E, Salaris M, Ferraro FR, Lanzoni B, Raso S, Hong J, Webb JJ, Zocchi A (2018a) The peculiar radial distribution of multiple populations in the massive globular cluster M80. Astrophys J 859:15.  https://doi.org/10.3847/1538-4357/aabb56. arXiv:1804.03222 ADSCrossRefGoogle Scholar
  125. Dalessandro E, Lardo C, Cadelano M, Saracino S, Bastian N, Mucciarelli A, Salaris M, Stetson P, Pancino E (2018b) IC 4499 revised: spectro-photometric evidence of small light-element variations. Astron Astrophys 618:A131.  https://doi.org/10.1051/0004-6361/201833650. arXiv:1807.07618 ADSCrossRefGoogle Scholar
  126. Dalessandro E, Mucciarelli A, Bellazzini M, Sollima A, Vesperini E, Hong J, Hénault-Brunet V, Ferraro FR, Ibata R, Lanzoni B, Massari D, Salaris M (2018c) The unexpected kinematics of multiple populations in NGC 6362: do binaries play a role? Astrophys J 864:33.  https://doi.org/10.3847/1538-4357/aad4b3. arXiv:1807.07918 ADSCrossRefGoogle Scholar
  127. D’Antona F, Caloi V (2004) The early evolution of globular clusters: the case of NGC 2808. Astrophys J 611:871–880.  https://doi.org/10.1086/422334. arXiv:astro-ph/0405016 ADSCrossRefGoogle Scholar
  128. D’Antona F, Caloi V, Montalbán J, Ventura P, Gratton R (2002) Helium variation due to self-pollution among Globular Cluster stars. Consequences on the horizontal branch morphology. Astron Astrophys 395:69–75.  https://doi.org/10.1051/0004-6361:20021220. arXiv:astro-ph/0209331 ADSCrossRefGoogle Scholar
  129. D’Antona F, Bellazzini M, Caloi V, Pecci FF, Galleti S, Rood RT (2005) A helium spread among the main-sequence stars in NGC 2808. Astrophys J 631:868–878.  https://doi.org/10.1086/431968. arXiv:astro-ph/0505347 ADSCrossRefGoogle Scholar
  130. D’Antona F, D’Ercole A, Carini R, Vesperini E, Ventura P (2012) Models for the lithium abundances of multiple populations in globular clusters and the possible role of the big bang lithium. Mon Not R Astron Soc 426:1710–1719.  https://doi.org/10.1111/j.1365-2966.2012.21663.x. arXiv:1207.1544 ADSCrossRefGoogle Scholar
  131. D’Antona F, Vesperini E, D’Ercole A, Ventura P, Milone AP, Marino AF, Tailo M (2016) A single model for the variety of multiple-population formation(s) in globular clusters: a temporal sequence. Mon Not R Astron Soc 458:2122–2139.  https://doi.org/10.1093/mnras/stw387. arXiv:1602.05412 ADSCrossRefGoogle Scholar
  132. D’Antona F, Milone AP, Tailo M, Ventura P, Vesperini E, di Criscienzo M (2017) Stars caught in the braking stage in young Magellanic Cloud clusters. Nat Astron 1:0186.  https://doi.org/10.1038/s41550-017-0186. arXiv:1707.07711 ADSCrossRefGoogle Scholar
  133. Davies MB, Piotto G, de Angeli F (2004) Blue straggler production in globular clusters. Mon Not R Astron Soc 349:129–134.  https://doi.org/10.1111/j.1365-2966.2004.07474.x. arXiv:astro-ph/0401502 ADSCrossRefGoogle Scholar
  134. de Marchi F, de Angeli F, Piotto G, Carraro G, Davies MB (2006) Search and analysis of blue straggler stars in open clusters. Astron Astrophys 459:489–497.  https://doi.org/10.1051/0004-6361:20064898. arXiv:astro-ph/0608464 ADSCrossRefGoogle Scholar
  135. de Mink SE, Pols OR, Langer N, Izzard RG (2009) Massive binaries as the source of abundance anomalies in globular clusters. Astron Astrophys 507:L1–L4.  https://doi.org/10.1051/0004-6361/200913205. arXiv:0910.1086 ADSCrossRefGoogle Scholar
  136. de Silva GM, Gibson BK, Lattanzio J, Asplund M (2009) On and Na abundance patterns in open clusters of the Galactic disk. Astron Astrophys 500:L25–L28.  https://doi.org/10.1051/0004-6361/200912279. arXiv:0905.4354 ADSCrossRefGoogle Scholar
  137. Decressin T, Meynet G, Charbonnel C, Prantzos N, Ekström S (2007) Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters. Astron Astrophys 464:1029–1044.  https://doi.org/10.1051/0004-6361:20066013. arXiv:astro-ph/0611379 ADSCrossRefGoogle Scholar
  138. Denisenkov PA, Denisenkova SN (1989) Possible explanation of the correlation between nitrogen and sodium over abundances for red giants in globular clusters. Astron Tsirkulyar 1538:11ADSGoogle Scholar
  139. D’Ercole A, Vesperini E, D’Antona F, McMillan SLW, Recchi S (2008) Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon Not R Astron Soc 391(2):825–843.  https://doi.org/10.1111/j.1365-2966.2008.13915.x. arXiv:0809.1438 ADSCrossRefGoogle Scholar
  140. D’Ercole A, Vesperini E, D’Antona F, McMillan SLW, Recchi S (2008) Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon Not R Astron Soc 391:825–843.  https://doi.org/10.1111/j.1365-2966.2008.13915.x. arXiv:0809.1438 ADSCrossRefGoogle Scholar
  141. D’Ercole A, D’Antona F, Ventura P, Vesperini E, McMillan SLW (2010) Abundance patterns of multiple populations in globular clusters: a chemical evolution model based on yields from AGB ejecta. Mon Not R Astron Soc 407(2):854–869.  https://doi.org/10.1111/j.1365-2966.2010.16996.x. arXiv:1005.1892 ADSCrossRefGoogle Scholar
  142. D’Ercole A, D’Antona F, Vesperini E (2011) Formation of multiple populations in globular clusters: constraints on the dilution by pristine gas. Mon Not R Astron Soc 415:1304–1309.  https://doi.org/10.1111/j.1365-2966.2011.18776.x. arXiv:1103.4715 ADSCrossRefGoogle Scholar
  143. D’Ercole A, D’Antona F, Carini R, Vesperini E, Ventura P (2012) The role of super-asymptotic giant branch ejecta in the abundance patterns of multiple populations in globular clusters. Mon Not R Astron Soc 423(2):1521–1533.  https://doi.org/10.1111/j.1365-2966.2012.20974.x. arXiv:1203.4992 ADSCrossRefGoogle Scholar
  144. D’Ercole A, D’Antona F, Vesperini E (2016) Accretion of pristine gas and dilution during the formation of multiple-population globular clusters. Mon Not R Astron Soc 461:4088–4098.  https://doi.org/10.1093/mnras/stw1583. arXiv:1607.00951 ADSCrossRefGoogle Scholar
  145. di Criscienzo M, D’Antona F, Ventura P (2010) A detailed study of the main sequence of the globular cluster NGC 6397: can we derive constraints on the existence of multiple populations? Astron Astrophys 511:A70.  https://doi.org/10.1051/0004-6361/200912516. arXiv:0912.3150 CrossRefGoogle Scholar
  146. Dias B, Barbuy B, Saviane I, Held EV, Da Costa GS, Ortolani S, Gullieuszik M, Vásquez S (2016) FORS2/VLT survey of Milky Way globular clusters. II. Fe and Mg abundances of 51 Milky Way globular clusters on a homogeneous scale. Astron Astrophys 590:A9.  https://doi.org/10.1051/0004-6361/201526765. arXiv:1603.02672 CrossRefGoogle Scholar
  147. Dobrovolskas V, Kučinskas A, Bonifacio P, Korotin SA, Steffen M, Sbordone L, Caffau E, Ludwig HG, Royer F, Prakapavičius D (2014) Abundances of lithium, oxygen, and sodium in the turn-off stars of Galactic globular cluster 47 Tucanae. Astron Astrophys 565:A121.  https://doi.org/10.1051/0004-6361/201322868. arXiv:1311.1072 ADSCrossRefGoogle Scholar
  148. Doherty CL, Gil-Pons P, Lau HHB, Lattanzio JC, Siess L, Campbell SW (2014) Super and massive AGB stars—III. Nucleosynthesis in metal-poor and very metal-poor stars—Z = 0.001 and 0.0001. Mon Not R Astron Soc 441:582–598.  https://doi.org/10.1093/mnras/stu571. arXiv:1403.5054 ADSCrossRefGoogle Scholar
  149. Donati P, Cantat Gaudin T, Bragaglia A, Friel E, Magrini L, Smiljanic R, Vallenari A, Tosi M, Sordo R, Tautvaisiene G, Blanco-Cuaresma S, Costado MT, Geisler D, Klutsch A, Mowlavi N, Muñoz C, San Roman I, Zaggia S, Gilmore G, Randich S, Bensby T, Flaccomio E, Koposov SE, Korn AJ, Pancino E, Recio-Blanco A, Franciosini E, de Laverny P, Lewis J, Morbidelli L, Prisinzano L, Sacco G, Worley CC, Hourihane A, Jofré P, Lardo C, Maiorca E (2014) The Gaia-ESO Survey: reevaluation of the parameters of the open cluster Trumpler 20 using photometry and spectroscopy. Astron Astrophys 561:A94.  https://doi.org/10.1051/0004-6361/201322911. arXiv:1312.3925 CrossRefGoogle Scholar
  150. D’Orazi V, Marino AF (2010) Lithium abundances in red giants of M4: evidence for asymptotic giant branch star pollution in globular clusters? Astrophys J Lett 716:L166–L169.  https://doi.org/10.1088/2041-8205/716/2/L166. arXiv:1005.3376 ADSCrossRefGoogle Scholar
  151. D’Orazi V, Gratton R, Lucatello S, Carretta E, Bragaglia A, Marino AF (2010a) Ba stars and other binaries in first and second generation stars in globular clusters. Astrophys J Lett 719:L213–L217.  https://doi.org/10.1088/2041-8205/719/2/L213. arXiv:1007.2164 ADSCrossRefGoogle Scholar
  152. D’Orazi V, Lucatello S, Gratton R, Bragaglia A, Carretta E, Shen Z, Zaggia S (2010b) Lithium and proton-capture elements in globular cluster dwarfs: the case of 47 TUC. Astrophys J Lett 713:L1–L5.  https://doi.org/10.1088/2041-8205/713/1/L1. arXiv:1003.0013 ADSCrossRefGoogle Scholar
  153. D’Orazi V, Gratton RG, Pancino E, Bragaglia A, Carretta E, Lucatello S, Sneden C (2011) Chemical enrichment mechanisms in \(\omega \) Centauri: clues from neutron-capture elements. Astron Astrophys 534:A29.  https://doi.org/10.1051/0004-6361/201117630. arXiv:1108.5216 ADSCrossRefGoogle Scholar
  154. D’Orazi V, Campbell SW, Lugaro M, Lattanzio JC, Pignatari M, Carretta E (2013) On the internal pollution mechanisms in the globular cluster NGC 6121 (M4): heavy-element abundances and AGB models. Mon Not R Astron Soc 433:366–381.  https://doi.org/10.1093/mnras/stt728. arXiv:1304.7009 ADSCrossRefGoogle Scholar
  155. D’Orazi V, Angelou GC, Gratton RG, Lattanzio JC, Bragaglia A, Carretta E, Lucatello S, Momany Y (2014) Lithium abundances in globular cluster giants: NGC 6218 (M12) and NGC 5904 (M5). Astrophys J 791:39.  https://doi.org/10.1088/0004-637X/791/1/39. arXiv:1406.5513 ADSCrossRefGoogle Scholar
  156. D’Orazi V, Gratton RG, Angelou GC, Bragaglia A, Carretta E, Lattanzio JC, Lucatello S, Momany Y, Sollima A, Beccari G (2015) Lithium abundances in globular cluster giants: NGC 1904, NGC 2808, and NGC 362. Mon Not R Astron Soc 449:4038–4047.  https://doi.org/10.1093/mnras/stv612. arXiv:1503.05925 ADSCrossRefGoogle Scholar
  157. Dotter A, Sarajedini A, Anderson J, Aparicio A, Bedin LR, Chaboyer B, Majewski S, Marín-Franch A, Milone A, Paust N, Piotto G, Reid IN, Rosenberg A, Siegel M (2010) The ACS survey of galactic globular clusters. IX. Horizontal branch morphology and the second parameter phenomenon. Astrophys J 708:698–716.  https://doi.org/10.1088/0004-637X/708/1/698. arXiv:0911.2469 ADSCrossRefGoogle Scholar
  158. Dotter A, Sarajedini A, Anderson J (2011) Globular clusters in the outer galactic halo: new Hubble Space Telescope/advanced camera for surveys imaging of six globular clusters and the galactic globular cluster age-metallicity relation. Astrophys J 738:74.  https://doi.org/10.1088/0004-637X/738/1/74. arXiv:1106.4307 ADSCrossRefGoogle Scholar
  159. Dotter A, Milone AP, Conroy C, Marino AF, Sarajedini A (2018) Ruprecht 106: a riddle, wrapped in a mystery, inside an enigma. Astrophys J Lett 865:L10.  https://doi.org/10.3847/2041-8213/aae08f. arXiv:1808.05582 ADSCrossRefGoogle Scholar
  160. Drukier GA (1996) Retention fractions for globular cluster neutron stars. Mon Not R Astron Soc 280:498–514.  https://doi.org/10.1093/mnras/280.2.498. arXiv:astro-ph/9512163 ADSCrossRefGoogle Scholar
  161. Duchêne G, Lacour S, Moraux E, Goodwin S, Bouvier J (2018) Is stellar multiplicity universal? Tight stellar binaries in the Orion nebula Cluster. Mon Not R Astron Soc 478:1825–1836.  https://doi.org/10.1093/mnras/sty1180. arXiv:1805.00965 ADSCrossRefGoogle Scholar
  162. Dupree AK, Avrett EH (2013) Direct evaluation of the helium abundances in Omega Centauri. Astrophys J Lett 773:L28.  https://doi.org/10.1088/2041-8205/773/2/L28. arXiv:1307.5860 ADSCrossRefGoogle Scholar
  163. Dupree AK, Dotter A, Johnson CI, Marino AF, Milone AP, Bailey JI III, Crane JD, Mateo M, Olszewski EW (2017) NGC 1866: first spectroscopic detection of fast-rotating stars in a young LMC cluster. Astrophys J Lett 846:L1.  https://doi.org/10.3847/2041-8213/aa85dd. arXiv:1708.03386 ADSCrossRefGoogle Scholar
  164. Elmegreen BG (2017) Globular cluster formation at high density: a model for elemental enrichment with fast recycling of massive-star debris. Astrophys J 836:80.  https://doi.org/10.3847/1538-4357/836/1/80. arXiv:1701.01034 ADSCrossRefGoogle Scholar
  165. Feltzing S, Primas F, Johnson RA (2009) Stellar abundances and ages for metal-rich Milky Way globular clusters. Stellar parameters and elemental abundances for 9 HB stars in NGC 6352. Astron Astrophys 493:913–930.  https://doi.org/10.1051/0004-6361:200810137. arXiv:0810.4832 ADSCrossRefGoogle Scholar
  166. Fernández-Trincado JG, Robin AC, Moreno E, Schiavon RP, García Pérez AE, Vieira K, Cunha K, Zamora O, Sneden C, Souto D, Carrera R, Johnson JA, Shetrone M, Zasowski G, García-Hernández DA, Majewski SR, Reylé C, Blanco-Cuaresma S, Martinez-Medina LA, Pérez-Villegas A, Valenzuela O, Pichardo B, Meza A, Mészáros S, Sobeck J, Geisler D, Anders F, Schultheis M, Tang B, Roman-Lopes A, Mennickent RE, Pan K, Nitschelm C, Allard F (2016) Discovery of a metal-poor field giant with a globular cluster second-generation abundance pattern. Astrophys J 833:132.  https://doi.org/10.3847/1538-4357/833/2/132. arXiv:1604.01279 ADSCrossRefGoogle Scholar
  167. Fernández-Trincado JG, Zamora O, García-Hernández DA, Souto D, Dell’Agli F, Schiavon RP, Geisler D, Tang B, Villanova S, Hasselquist S, Mennickent RE, Cunha K, Shetrone M, Allende Prieto C, Vieira K, Zasowski G, Sobeck J, Hayes CR, Majewski SR, Placco VM, Beers TC, Schleicher DRG, Robin AC, Mészáros S, Masseron T, García Pérez AE, Anders F, Meza A, Alves-Brito A, Carrera R, Minniti D, Lane RR, Fernández-Alvar E, Moreno E, Pichardo B, Pérez-Villegas A, Schultheis M, Roman-Lopes A, Fuentes CE, Nitschelm C, Harding P, Bizyaev D, Pan K, Oravetz D, Simmons A, Ivans II, Blanco-Cuaresma S, Hernández J, Alonso-García J, Valenzuela O, Chanamé J (2017) Atypical Mg-poor Milky Way field stars with globular cluster second-generation-like chemical patterns. Astrophys J Lett 846:L2.  https://doi.org/10.3847/2041-8213/aa8032. arXiv:1707.03108 ADSCrossRefGoogle Scholar
  168. Ferrarese L, Côté P, Dalla Bontà E, Peng EW, Merritt D, Jordán A, Blakeslee JP, Haşegan M, Mei S, Piatek S, Tonry JL, West MJ (2006) A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies. Astrophys J Lett 644:L21–L24.  https://doi.org/10.1086/505388. arXiv:astro-ph/0603840 ADSCrossRefGoogle Scholar
  169. Ferraro FR, Mucciarelli A, Carretta E, Origlia L (2006a) On the iron content of NGC 1978 in the LMC: a metal-rich, chemically homogeneous cluster. Astrophys J Lett 645:L33–L36.  https://doi.org/10.1086/506178. arXiv:astro-ph/0605646 ADSCrossRefGoogle Scholar
  170. Ferraro FR, Sabbi E, Gratton R, Piotto G, Lanzoni B, Carretta E, Rood RT, Sills A, Fusi Pecci F, Moehler S, Beccari G, Lucatello S, Compagni N (2006b) Discovery of carbon/oxygen-depleted blue straggler stars in 47 Tucanae: the chemical signature of a mass transfer formation process. Astrophys J Lett 647:L53–L56.  https://doi.org/10.1086/507327. arXiv:astro-ph/0610081 ADSCrossRefGoogle Scholar
  171. Forbes DA, Bridges T (2010) Accreted versus in situ Milky Way globular clusters. Mon Not R Astron Soc 404:1203–1214.  https://doi.org/10.1111/j.1365-2966.2010.16373.x. arXiv:1001.4289 ADSCrossRefGoogle Scholar
  172. Forbes DA, Lasky P, Graham AW, Spitler L (2008) Uniting old stellar systems: from globular clusters to giant ellipticals. Mon Not R Astron Soc 389:1924–1936.  https://doi.org/10.1111/j.1365-2966.2008.13739.x. arXiv:0806.1090 ADSCrossRefGoogle Scholar
  173. Fregeau JM, Rasio FA (2007) Monte Carlo simulations of globular cluster evolution. IV. Direct integration of strong interactions. Astrophys J 658:1047–1061.  https://doi.org/10.1086/511809. arXiv:astro-ph/0608261 ADSCrossRefGoogle Scholar
  174. Fregeau JM, Ivanova N, Rasio FA (2009) Evolution of the binary fraction in dense stellar systems. Astrophys J 707:1533–1540.  https://doi.org/10.1088/0004-637X/707/2/1533. arXiv:0907.4196 ADSCrossRefGoogle Scholar
  175. Freiburghaus C, Rosswog S, Thielemann FK (1999) R-process in neutron star mergers. Astrophys J Lett 525:L121–L124.  https://doi.org/10.1086/312343 ADSCrossRefGoogle Scholar
  176. Fu X, Bressan A, Molaro P, Marigo P (2015) Lithium evolution in metal-poor stars: from pre-main sequence to the Spite plateau. Mon Not R Astron Soc 452:3256–3265.  https://doi.org/10.1093/mnras/stv1384. arXiv:1506.05993 ADSCrossRefGoogle Scholar
  177. Fusi Pecci F, Bellazzini M, Cacciari C, Ferraro FR (1995) The young globular clusters of the Milky Way and the local group galaxies: playing with great circles. Astron J 110:1664.  https://doi.org/10.1086/117639. arXiv:astro-ph/9507065 ADSCrossRefGoogle Scholar
  178. Gaia Collaboration, Helmi A, van Leeuwen F, McMillan PJ, Massari D, Antoja T, Robin AC, Lindegren L, Bastian U, Arenou F, et al (2018) Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron Astrophys 616:A12.  https://doi.org/10.1051/0004-6361/201832698, arXiv:1804.09381
  179. García-Hernández DA, Mészáros S, Monelli M, Cassisi S, Stetson PB, Zamora O, Shetrone M, Lucatello S (2015) Clear evidence for the presence of second-generation asymptotic giant branch stars in metal-poor galactic globular clusters. Astrophys J Lett 815:L4.  https://doi.org/10.1088/2041-8205/815/1/L4. arXiv:1511.05714 ADSCrossRefGoogle Scholar
  180. Geisler D, Villanova S, Carraro G, Pilachowski C, Cummings J, Johnson CI, Bresolin F (2012) The unique Na: O abundance distribution in NGC 6791: the first open(?) Cluster with multiple populations. Astrophys J Lett 756:L40.  https://doi.org/10.1088/2041-8205/756/2/L40. arXiv:1207.3328 ADSCrossRefGoogle Scholar
  181. Georgiev IY, Hilker M, Puzia TH, Goudfrooij P, Baumgardt H (2009) Globular cluster systems in nearby dwarf galaxies—II. Nuclear star clusters and their relation to massive Galactic globular clusters. Mon Not R Astron Soc 396:1075–1085.  https://doi.org/10.1111/j.1365-2966.2009.14776.x. arXiv:0903.2857 ADSCrossRefGoogle Scholar
  182. Gieles M, Charbonnel C, Krause MGH, Hénault-Brunet V, Agertz O, Lamers HJGLM, Bastian N, Gualandris A, Zocchi A, Petts JA (2018) Concurrent formation of supermassive stars and globular clusters: implications for early self-enrichment. Mon Not R Astron Soc 478:2461–2479.  https://doi.org/10.1093/mnras/sty1059. arXiv:1804.04682 ADSCrossRefGoogle Scholar
  183. Giersz M, Askar A, Wang L, Hypki A, Leveque A, Spurzem R (2019) MOCCA survey data base – I. Dissolution of tidally filling star clusters harbouring black hole subsystems. Mon Not R Astron Soc 487(2):2412–2423.  https://doi.org/10.1093/mnras/stz1460. arXiv:1904.01227 ADSCrossRefGoogle Scholar
  184. Giesers B, Kamann S, Dreizler S, Husser TO, Askar A, Göttgens F, Brinchmann J, Latour M, Weilbacher PM, Wendt M, Roth MM (2019) A stellar census in globular clusters with MUSE: Binaries in NGC 3201, arXiv e-prints. arXiv:1909.04050,
  185. Glatt K, Grebel EK, Sabbi E, Gallagher JS III, Nota A, Sirianni M, Clementini G, Tosi M, Harbeck D, Koch A, Kayser A, Da Costa G (2008) Age determination of six intermediate-age Small Magellanic Cloud star clusters with HST/ACS. Astron J 136:1703–1727.  https://doi.org/10.1088/0004-6256/136/4/1703. arXiv:0807.3744 ADSCrossRefGoogle Scholar
  186. Glatt K, Grebel EK, Jordi K, Gallagher JS III, Da Costa G, Clementini G, Tosi M, Harbeck D, Nota A, Sabbi E, Sirianni M (2011) Present-day mass function of six Small Magellanic Cloud intermediate-age and old star clusters. Astron J 142:36.  https://doi.org/10.1088/0004-6256/142/2/36 ADSCrossRefGoogle Scholar
  187. Goudfrooij P, Girardi L, Kozhurina-Platais V, Kalirai JS, Platais I, Puzia TH, Correnti M, Bressan A, Chandar R, Kerber L, Marigo P, Rubele S (2014) Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity. Astrophys J 797:35.  https://doi.org/10.1088/0004-637X/797/1/35. arXiv:1410.3840 ADSCrossRefGoogle Scholar
  188. Gratton R, Sneden C, Carretta E (2004) Annu Rev Astron Astrophys 42:385–440.  https://doi.org/10.1146/annurev.astro.42.053102.133945 ADSCrossRefGoogle Scholar
  189. Gratton RG, Carretta E (2010) Diluting the material forming the second generation stars in globular clusters: the contribution by unevolved stars. Astron Astrophys 521:A54.  https://doi.org/10.1051/0004-6361/201014997. arXiv:1007.4894 ADSCrossRefGoogle Scholar
  190. Gratton RG, Sneden C, Carretta E, Bragaglia A (2000) Mixing along the red giant branch in metal-poor field stars. Astron Astrophys 354:169–187ADSGoogle Scholar
  191. Gratton RG, Bonifacio P, Bragaglia A, Carretta E, Castellani V, Centurion M, Chieffi A, Claudi R, Clementini G, D’Antona F, Desidera S, François P, Grundahl F, Lucatello S, Molaro P, Pasquini L, Sneden C, Spite F, Straniero O (2001) The O–Na and Mg–Al anticorrelations in turn-off and early subgiants in globular clusters. Astron Astrophys 369:87–98.  https://doi.org/10.1051/0004-6361:20010144. arXiv:astro-ph/0012457 ADSCrossRefGoogle Scholar
  192. Gratton RG, Lucatello S, Bragaglia A, Carretta E, Momany Y, Pancino E, Valenti E (2006) Na–O anticorrelation and HB. III. The abundances of NGC 6441 from FLAMES-UVES spectra. Astron Astrophys 455:271–281.  https://doi.org/10.1051/0004-6361:20064957. arXiv:astro-ph/0603858 ADSCrossRefGoogle Scholar
  193. Gratton RG, Lucatello S, Bragaglia A, Carretta E, Cassisi S, Momany Y, Pancino E, Valenti E, Caloi V, Claudi R, D’Antona F, Desidera S, François P, James G, Moehler S, Ortolani S, Pasquini L, Piotto G, Recio-Blanco A (2007) Na–O anticorrelation and horizontal branches. V. The Na–O anticorrelation in NGC 6441 from Giraffe spectra. Astron Astrophys 464:953–965.  https://doi.org/10.1051/0004-6361:20066061. arXiv:astro-ph/0701179 ADSCrossRefGoogle Scholar
  194. Gratton RG, Carretta E, Bragaglia A, Lucatello S, D’Orazi V (2010a) The second and third parameters of the horizontal branch in globular clusters. Astron Astrophys 517:A81.  https://doi.org/10.1051/0004-6361/200912572. arXiv:1004.3862 ADSCrossRefGoogle Scholar
  195. Gratton RG, D’Orazi V, Bragaglia A, Carretta E, Lucatello S (2010b) The connection between missing AGB stars and extended horizontal branches. Astron Astrophys 522:A77.  https://doi.org/10.1051/0004-6361/201015405. arXiv:1010.5913 ADSCrossRefGoogle Scholar
  196. Gratton RG, Johnson CI, Lucatello S, D’Orazi V, Pilachowski C (2011a) Multiple populations in \(\omega \) Centauri: a cluster analysis of spectroscopic data. Astron Astrophys 534:A72.  https://doi.org/10.1051/0004-6361/201117093. arXiv:1105.5544 ADSCrossRefGoogle Scholar
  197. Gratton RG, Lucatello S, Carretta E, Bragaglia A, D’Orazi V, Momany YA (2011b) The Na–O anticorrelation in horizontal branch stars. I. NGC 2808. Astron Astrophys 534:A123.  https://doi.org/10.1051/0004-6361/201117690. arXiv:1109.4013 ADSCrossRefGoogle Scholar
  198. Gratton RG, Carretta E, Bragaglia A (2012a) Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. Astron Astrophys Rev 20:50.  https://doi.org/10.1007/s00159-012-0050-3. arXiv:1201.6526 ADSCrossRefGoogle Scholar
  199. Gratton RG, Lucatello S, Carretta E, Bragaglia A, D’Orazi V, Al Momany Y, Sollima A, Salaris M, Cassisi S (2012b) The Na–O anticorrelation in horizontal branch stars. II. NGC 1851. Astron Astrophys 539:A19.  https://doi.org/10.1051/0004-6361/201118491. arXiv:1201.1772 ADSCrossRefGoogle Scholar
  200. Gratton RG, Villanova S, Lucatello S, Sollima A, Geisler D, Carretta E, Cassisi S, Bragaglia A (2012c) Spectroscopic analysis of the two subgiant branches of the globular cluster NGC 1851. Astron Astrophys 544:A12.  https://doi.org/10.1051/0004-6361/201219276. arXiv:1205.5719 ADSCrossRefGoogle Scholar
  201. Gratton RG, Lucatello S, Sollima A, Carretta E, Bragaglia A, Momany Y, D’Orazi V, Cassisi S, Pietrinferni A, Salaris M (2013) The Na–O anticorrelation in horizontal branch stars. III. 47 Tucanae and M 5. Astron Astrophys 549:A41.  https://doi.org/10.1051/0004-6361/201219976. arXiv:1210.4069 ADSCrossRefGoogle Scholar
  202. Gratton RG, Lucatello S, Sollima A, Carretta E, Bragaglia A, Momany Y, D’Orazi V, Cassisi S, Salaris M (2014) The Na–O anticorrelation in horizontal branch stars. IV. M 22. Astron Astrophys 563:A13.  https://doi.org/10.1051/0004-6361/201323101. arXiv:1401.7109 ADSCrossRefGoogle Scholar
  203. Gratton RG, Lucatello S, Sollima A, Carretta E, Bragaglia A, Momany Y, D’Orazi V, Salaris M, Cassisi S, Stetson PB (2015) The Na–O anticorrelation in horizontal branch stars. V. NGC 6723. Astron Astrophys 573:A92.  https://doi.org/10.1051/0004-6361/201424393. arXiv:1410.8378 ADSCrossRefGoogle Scholar
  204. Grebel EK (2016) Globular Clusters in the Local Group. In: Meiron Y, Li S, Liu FK, Spurzem R (eds) Star clusters and black holes in galaxies across cosmic time, IAU Symposium, vol 312, pp 157–170.  https://doi.org/10.1017/S1743921315008078 CrossRefGoogle Scholar
  205. Greggio L, Renzini A (1990) Clues on the hot star content and the ultraviolet output of elliptical galaxies. Astrophys J 364:35–64.  https://doi.org/10.1086/169384 ADSCrossRefGoogle Scholar
  206. Griffen BF, Drinkwater MJ, Thomas PA, Helly JC, Pimbblet KA (2010) Globular cluster formation within the Aquarius simulation. Mon Not R Astron Soc 405(1):375–386.  https://doi.org/10.1111/j.1365-2966.2010.16458.x. arXiv:0910.0310 ADSCrossRefGoogle Scholar
  207. Grillmair CJ (2009) Four new stellar debris streams in the galactic halo. Astrophys J 693:1118–1127.  https://doi.org/10.1088/0004-637X/693/2/1118. arXiv:0811.3965 ADSCrossRefGoogle Scholar
  208. Grillmair CJ, Dionatos O (2006) Detection of a 63\({^\circ }\) cold stellar stream in the Sloan Digital Sky Survey. Astrophys J Lett 643:L17–L20.  https://doi.org/10.1086/505111. arXiv:astro-ph/0604332 ADSCrossRefGoogle Scholar
  209. Grundahl F, VandenBerg DA, Andersen MI (1998) Strömgren photometry of globular clusters: the distance and age of M13, evidence for two populations of horizontal-branch stars. Astrophys J Lett 500:L179–L182.  https://doi.org/10.1086/311419. arXiv:astro-ph/9806081 ADSCrossRefGoogle Scholar
  210. Grundahl F, Catelan M, Landsman WB, Stetson PB, Andersen MI (1999) Hot horizontal-branch stars: the ubiquitous nature of the “Jump” in Strömgren u, low gravities, and the role of radiative levitation of metals. Astrophys J 524:242–261.  https://doi.org/10.1086/307807. arXiv:astro-ph/9903120 ADSCrossRefGoogle Scholar
  211. Gruyters P, Nordlander T, Korn AJ (2014) Atomic diffusion and mixing in old stars. V. A deeper look into the globular cluster NGC 6752. Astron Astrophys 567:A72.  https://doi.org/10.1051/0004-6361/201423590. arXiv:1405.6543 ADSCrossRefGoogle Scholar
  212. Gruyters P, Lind K, Richard O, Grundahl F, Asplund M, Casagrande L, Charbonnel C, Milone A, Primas F, Korn AJ (2016) Atomic diffusion and mixing in old stars. VI. The lithium content of M30. Astron Astrophys 589:A61.  https://doi.org/10.1051/0004-6361/201527948. arXiv:1603.01565 ADSCrossRefGoogle Scholar
  213. Harbeck D, Smith GH, Grebel EK (2003) CN abundance variations on the main sequence of 47 Tucanae. Astron J 125:197–207.  https://doi.org/10.1086/345570. arXiv:astro-ph/0210364 ADSCrossRefGoogle Scholar
  214. Harris WE (1996) A catalog of parameters for globular clusters in the Milky Way. Astron J 112:1487.  https://doi.org/10.1086/118116 ADSCrossRefGoogle Scholar
  215. Hatzidimitriou D, Held EV, Tognelli E, Bragaglia A, Magrini L, Bravi L, Gazeas K, Dapergolas A, Drazdauskas A, Delgado-Mena E, Friel ED, Minkeviciute R, Sordo R, Tautvaisiene G, Gilmore G, Randich S, Feltzing S, Vallenari A, Alfaro EJ, Flaccomio E, Lanzafame AC, Pancino E, Smiljanic R, Bayo A, Bergemann M, Carraro G, Casey AR, Costado MT, Damiani F, Franciosini E, Gonneau A, Jofré P, Lewis J, Monaco L, Morbidelli L, Worley CC, Zaggia S (2019) The Gaia-ESO Survey: the inner disc, intermediate-age open cluster Pismis 18. Astron Astrophys 626:A90.  https://doi.org/10.1051/0004-6361/201834636. arXiv:1906.09828 CrossRefGoogle Scholar
  216. Haywood M, Di Matteo P, Lehnert MD, Snaith O, Khoperskov S, Gómez A (2018) In disguise or out of reach: first clues about in situ and accreted stars in the stellar halo of the Milky Way from Gaia DR2. Astrophys J 863:113.  https://doi.org/10.3847/1538-4357/aad235. arXiv:1805.02617 ADSCrossRefGoogle Scholar
  217. Heggie D, Hut P (2003) The gravitational million-body problem: a multidisciplinary approach to star cluster dynamics. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781139164535 CrossRefzbMATHGoogle Scholar
  218. Heggie DC (1975) Binary evolution in stellar dynamics. Mon Not R Astron Soc 173:729–787.  https://doi.org/10.1093/mnras/173.3.729 ADSCrossRefGoogle Scholar
  219. Helmi A, Babusiaux C, Koppelman HH, Massari D, Veljanoski J, Brown AGA (2018) The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 563:85–88.  https://doi.org/10.1038/s41586-018-0625-x. arXiv:1806.06038 ADSCrossRefGoogle Scholar
  220. Hénault-Brunet V, Gieles M, Agertz O, Read JI (2015) Multiple populations in globular clusters: the distinct kinematic imprints of different formation scenarios. Mon Not R Astron Soc 450:1164–1198.  https://doi.org/10.1093/mnras/stv675. arXiv:1503.07532 ADSCrossRefGoogle Scholar
  221. Hénon M (1970) Numerical exploration of the restricted problem. VI. Hill’s case: non-periodic orbits. Astron Astrophys 9:24–36ADSzbMATHGoogle Scholar
  222. Hénon M (1971) The Monte Carlo Method. Astrophys Space Sci 14:151–167.  https://doi.org/10.1007/BF00649201
  223. Herschel W (1814) Astronomical observations relating to the sidereal part of the heavens, and its connection with the nebulous part; arranged for the purpose of a critical examination. Philos Trans R Soc Lond Ser I 104:248–284ADSCrossRefGoogle Scholar
  224. Hollyhead K, Bastian N, Adamo A, Silva-Villa E, Dale J, Ryon JE, Gazak Z (2015) Studying the YMC population of M83: how long clusters remain embedded, their interaction with the ISM and implications for GC formation theories. Mon Not R Astron Soc 449:1106–1117.  https://doi.org/10.1093/mnras/stv331. arXiv:1502.03823 ADSCrossRefGoogle Scholar
  225. Hollyhead K, Kacharov N, Lardo C, Bastian N, Hilker M, Rejkuba M, Koch A, Grebel EK, Georgiev I (2017) Evidence for multiple populations in the intermediate-age cluster Lindsay 1 in the SMC. Mon Not R Astron Soc 465:L39–L43.  https://doi.org/10.1093/mnrasl/slw179. arXiv:1609.01302 ADSCrossRefGoogle Scholar
  226. Hollyhead K, Lardo C, Kacharov N, Bastian N, Hilker M, Rejkuba M, Koch A, Grebel EK, Georgiev I (2018) Kron 3: a fourth intermediate age cluster in the SMC with evidence of multiple populations. Mon Not R Astron Soc 476:114–121.  https://doi.org/10.1093/mnras/sty230. arXiv:1801.09670 ADSCrossRefGoogle Scholar
  227. Hollyhead K, Martocchia S, Lardo C, Bastian N, Kacharov N, Niederhofer F, Cabrera-Ziri I, Dalessandro E, Mucciarelli A, Salaris M, Usher C (2019) Spectroscopic detection of multiple populations in the 2 Gyr old cluster Hodge 6 in the LMC, arXiv e-prints. arXiv:1902.02297
  228. Hong J, Vesperini E, Sollima A, McMillan SLW, D’Antona F, D’Ercole A (2015) Evolution of binary stars in multiple-population globular clusters. Mon Not R Astron Soc 449:629–638.  https://doi.org/10.1093/mnras/stv306. arXiv:1503.02087 ADSCrossRefGoogle Scholar
  229. Hong J, Vesperini E, Sollima A, McMillan SLW, D’Antona F, D’Ercole A (2016) Evolution of binary stars in multiple-population globular clusters—II. Compact binaries. Mon Not R Astron Soc 457:4507–4514.  https://doi.org/10.1093/mnras/stw262. arXiv:1604.01045 ADSCrossRefGoogle Scholar
  230. Hong J, Patel S, Vesperini E, Webb JJ, Dalessandro E (2019) Spatial mixing of binary stars in multiple-population globular clusters. Mon Not R Astron Soc 483:2592–2599.  https://doi.org/10.1093/mnras/sty3308. arXiv:1812.01229 ADSCrossRefGoogle Scholar
  231. Hosek MW Jr, Lu JR, Anderson J, Najarro F, Ghez AM, Morris MR, Clarkson WI, Albers SM (2019) The unusual initial mass function of the arches cluster. Astrophys J 870:44.  https://doi.org/10.3847/1538-4357/aaef90. arXiv:1808.02577 ADSCrossRefGoogle Scholar
  232. Huang Y, Chen B-Q, Zhang H-W, Yuan H-B, Xiang M-S, Wang C, Tian Z-J, Liu X-W (2019) Member Stars of the GD-1 Tidal Stream from the SDSS, LAMOST, and Gaia Surveys. Astrophys J 877:13.  https://doi.org/10.3847/1538-4357/ab158a ADSCrossRefGoogle Scholar
  233. Hurley JR, Aarseth SJ, Shara MM (2007) The core binary fractions of star clusters from realistic simulations. Astrophys J 665:707–718.  https://doi.org/10.1086/517879. arXiv:0704.0290 ADSCrossRefGoogle Scholar
  234. Hut P, Bahcall JN (1983) Binary-single star scattering. I. Numerical experiments for equal masses. Astrophys J 268:319–341.  https://doi.org/10.1086/160956 ADSCrossRefGoogle Scholar
  235. Ibata R, Bellazzini M, Malhan K, Martin N, Bianchini P (2019) Identification of the long stellar stream of the prototypical massive globular cluster \(\omega \) Centauri. Nat Astron 3:667–672.  https://doi.org/10.1038/s41550-019-0751-x ADSCrossRefGoogle Scholar
  236. Ibata RA, Gilmore G, Irwin MJ (1994) A dwarf satellite galaxy in Sagittarius. Nature 370:194–196.  https://doi.org/10.1038/370194a0 ADSCrossRefGoogle Scholar
  237. Iben I, Rood RT, Strom KM, Strom SE (1969) Ratio of horizontal branch stars to red giant stars in globular clusters. Nature 224(5223):1006–1008.  https://doi.org/10.1038/2241006a0 ADSCrossRefGoogle Scholar
  238. Iben I Jr (1964) Evolution through alpha-burning (\(M=3 \rightarrow 15 M_{\odot }\)). Astron J 69:545.  https://doi.org/10.1086/109317 ADSCrossRefGoogle Scholar
  239. Iorio G, Belokurov V (2019) The shape of the Galactic halo with Gaia DR2 RR Lyrae. Anatomy of an ancient major merger. Mon Not R Astron Soc 482:3868–3879.  https://doi.org/10.1093/mnras/sty2806. arXiv:1808.04370 ADSCrossRefGoogle Scholar
  240. Ivanova N, Belczynski K, Fregeau JM, Rasio FA (2005) The evolution of binary fractions in globular clusters. Mon Not R Astron Soc 358:572–584.  https://doi.org/10.1111/j.1365-2966.2005.08804.x. arXiv:astro-ph/0501131 ADSCrossRefGoogle Scholar
  241. Ivans II, Sneden C, Kraft RP, Suntzeff NB, Smith VV, Langer GE, Fulbright JP (1999) Star-to-star abundance variations among bright giants in the mildly metal-poor globular cluster M4. Astron J 118:1273–1300.  https://doi.org/10.1086/301017. arXiv:astro-ph/9905370 ADSCrossRefGoogle Scholar
  242. James G, François P, Bonifacio P, Carretta E, Gratton RG, Spite F (2004) Heavy elements and chemical enrichment in globular clusters. Astron Astrophys 427:825–838.  https://doi.org/10.1051/0004-6361:20041512. arXiv:astro-ph/0408330 ADSCrossRefGoogle Scholar
  243. Jang S, Lee YW, Joo SJ, Na C (2014) Multiple populations in globular clusters and the origin of the Oosterhoff period groups. Mon Not R Astron Soc 443:L15–L19.  https://doi.org/10.1093/mnrasl/slu064. arXiv:1404.7508 ADSCrossRefGoogle Scholar
  244. Johnson CI, Pilachowski CA (2010) Chemical abundances for 855 giants in the globular cluster Omega Centauri (NGC 5139). Astrophys J 722:1373–1410.  https://doi.org/10.1088/0004-637X/722/2/1373. arXiv:1008.2232 ADSCrossRefGoogle Scholar
  245. Johnson CI, Rich RM, Pilachowski CA, Caldwell N, Mateo M, Bailey JI III, Crane JD (2015) A spectroscopic analysis of the galactic globular cluster NGC 6273 (M19). Astron J 150:63.  https://doi.org/10.1088/0004-6256/150/2/63. arXiv:1507.00756 ADSCrossRefGoogle Scholar
  246. Johnson CI, Caldwell N, Rich RM, Pilachowski CA, Hsyu T (2016) The chemical composition of red giant branch stars in the galactic globular clusters NGC 6342 and NGC 6366. Astron J 152:21.  https://doi.org/10.3847/0004-6256/152/1/21. arXiv:1606.08491 ADSCrossRefGoogle Scholar
  247. Johnson CI, Caldwell N, Rich RM, Mateo M, Bailey JI III, Clarkson WI, Olszewski EW, Walker MG (2017a) A chemical composition survey of the iron-complex globular cluster NGC 6273 (M19). Astrophys J 836:168.  https://doi.org/10.3847/1538-4357/836/2/168. arXiv:1611.05830 ADSCrossRefGoogle Scholar
  248. Johnson CI, Caldwell N, Rich RM, Mateo M, Bailey JI III, Olszewski EW, Walker MG (2017b) Chemical complexity in the Eu-enhanced monometallic globular NGC 5986. Astrophys J 842:24.  https://doi.org/10.3847/1538-4357/aa7414. arXiv:1705.10840 ADSCrossRefGoogle Scholar
  249. Johnson CI, Rich RM, Caldwell N, Mateo M, Bailey JI III, Olszewski EW, Walker MG (2018) Exploring the chemical composition and double horizontal branch of the bulge globular cluster NGC 6569. Astron J 155:71.  https://doi.org/10.3847/1538-3881/aaa294. arXiv:1801.10475 ADSCrossRefGoogle Scholar
  250. Johnson CI, Caldwell N, Rich RM, Mateo M, Bailey JI (2019) Light element discontinuities suggest an early termination of star formation in the globular cluster NGC 6402 (M14). Mon Not R Astron Soc.  https://doi.org/10.1093/mnras/stz587. arXiv:1903.01951 ADSCrossRefGoogle Scholar
  251. Johnson JA, Ivans II, Stetson PB (2006) Chemical compositions of red giant stars in old large magellanic cloud globular clusters. Astrophys J 640:801–822.  https://doi.org/10.1086/498882. arXiv:astro-ph/0512132 ADSCrossRefGoogle Scholar
  252. Kacharov N, Koch A, McWilliam A (2013) A comprehensive chemical abundance study of the outer halo globular cluster M 75. Astron Astrophys 554:A81.  https://doi.org/10.1051/0004-6361/201321392. arXiv:1304.4247 ADSCrossRefGoogle Scholar
  253. Käppeler F (1999) The origin of the heavy elements: the s process. Prog Part Nucl Phys 43:419–483.  https://doi.org/10.1016/S0146-6410(99)00098-8 ADSCrossRefGoogle Scholar
  254. Karakas AI, Lattanzio JC (2003) Production of aluminium and the heavy magnesium isotopes in asymptotic giant branch stars. Publ Astron Soc Aust 20:279–293.  https://doi.org/10.1071/AS03010 ADSCrossRefGoogle Scholar
  255. Karakas AI, Lattanzio JC (2014) The Dawes Review 2: nucleosynthesis and Stellar yields of low- and intermediate-mass single stars. Publ Astron Soc Aust 31:e030.  https://doi.org/10.1017/pasa.2014.21. arXiv:1405.0062 ADSCrossRefGoogle Scholar
  256. Keenan DW, Innanen KA (1975) Numerical investigation of galactic tidal effects on spherical stellar systems. Astron J 80:290–302.  https://doi.org/10.1086/111744 ADSCrossRefGoogle Scholar
  257. Kim HS, Cho J, Sharples RM, Vazdekis A, Beasley MA, Yoon SJ (2016) A new catalog of homogenized absorption line indices for Milky Way globular clusters from high-resolution integrated spectroscopy. Astrophys J Suppl 227:24.  https://doi.org/10.3847/1538-4365/227/2/24. arXiv:1610.08061 ADSCrossRefGoogle Scholar
  258. King CR, Da Costa GS, Demarque P (1985) The luminosity function on the subgiant branch of 47 Tucanae A comparison of observation and theory. Astrophys J 299:674–682.  https://doi.org/10.1086/163733 ADSCrossRefGoogle Scholar
  259. King IR (1966) The structure of star clusters. III. Some simple dynamical models. Astron J 71:64.  https://doi.org/10.1086/109857 ADSCrossRefGoogle Scholar
  260. Koch A, McWilliam A (2014) The chemical composition of a regular halo globular cluster: NGC 5897. Astron Astrophys 565:A23.  https://doi.org/10.1051/0004-6361/201323119. arXiv:1403.1262 ADSCrossRefGoogle Scholar
  261. Koch A, Grebel EK, Martell SL (2019) Purveyors of fine halos: re-assessing globular cluster contributions to the Milky Way halo buildup with SDSS-IV. Astron Astrophys 625:A75.  https://doi.org/10.1051/0004-6361/201834825. arXiv:1904.02146 ADSCrossRefGoogle Scholar
  262. Koposov SE, Rix HW, Hogg DW (2010) Constraining the Milky Way potential with a six-dimensional phase-space map of the GD-1 stellar stream. Astrophys J 712:260–273.  https://doi.org/10.1088/0004-637X/712/1/260. arXiv:0907.1085 ADSCrossRefGoogle Scholar
  263. Koposov SE, Belokurov V, Torrealba G (2017) Gaia 1 and 2. A pair of new Galactic star clusters. Mon Not R Astron Soc 470:2702–2709.  https://doi.org/10.1093/mnras/stx1182. arXiv:1702.01122 ADSCrossRefGoogle Scholar
  264. Kraft RP (1979) On the nonhomogeneity of metal abundances in stars of globular clusters and satellite subsystems of the Galaxy. Annu Rev Astron Astrophys 17:309–343.  https://doi.org/10.1146/annurev.aa.17.090179.001521 ADSCrossRefGoogle Scholar
  265. Kraft RP (1994) Abundance differences among globular-cluster giants: primordial versus evolutionary scenarios. Publ Astron Soc Pac 106:553–565.  https://doi.org/10.1086/133416 ADSCrossRefGoogle Scholar
  266. Kraft RP, Sneden C, Langer GE, Prosser CF (1992) Oxygen abundances in halo giants. II. Giants in the globular clusters M13 and M3 and the intermediately metal-poor halo field. Astron J 104:645–668.  https://doi.org/10.1086/116261 ADSCrossRefGoogle Scholar
  267. Kraft RP, Sneden C, Smith GH, Shetrone MD, Fulbright J (1998) Proton capture chains in globular cluster stars. III. Abundances of giants in the second-parameter globular cluster NGC 7006. Astron J 115:1500–1515.  https://doi.org/10.1086/300279 ADSCrossRefGoogle Scholar
  268. Krause M, Charbonnel C, Decressin T, Meynet G, Prantzos N (2013) Superbubble dynamics in globular cluster infancy. II. Consequences for secondary star formation in the context of self-enrichment via fast-rotating massive stars. Astron Astrophys 552:A121.  https://doi.org/10.1051/0004-6361/201220694. arXiv:1302.2494 ADSCrossRefGoogle Scholar
  269. Krause MGH, Charbonnel C, Bastian N, Diehl R (2016) Gas expulsion in massive star clusters? Constraints from observations of young and gas-free objects. Astron Astrophys 587:A53.  https://doi.org/10.1051/0004-6361/201526685. arXiv:1512.04256 ADSCrossRefGoogle Scholar
  270. Kroupa P (2002) The initial mass function of stars: evidence for uniformity in variable systems. Science 295:82–91.  https://doi.org/10.1126/science.1067524. arXiv:astro-ph/0201098 ADSCrossRefGoogle Scholar
  271. Kruijssen JMD (2014) Globular cluster formation in the context of galaxy formation and evolution. Class Quantum Gravity 31(24):244006.  https://doi.org/10.1088/0264-9381/31/24/244006. arXiv:1407.2953 ADSCrossRefzbMATHGoogle Scholar
  272. Kruijssen JMD (2015) Globular clusters as the relics of regular star formation in ‘normal’ high-redshift galaxies. Mon Not R Astron Soc 454:1658–1686.  https://doi.org/10.1093/mnras/stv2026. arXiv:1509.02163 ADSCrossRefGoogle Scholar
  273. Kuzma PB, Da Costa GS, Mackey AD, Roderick TA (2016) The outer envelopes of globular clusters—I. NGC 7089 (M2). Mon Not R Astron Soc 461:3639–3652.  https://doi.org/10.1093/mnras/stw1561. arXiv:1606.05949 ADSCrossRefGoogle Scholar
  274. Kuzma PB, Da Costa GS, Mackey AD (2018) The outer envelopes of globular clusters. II. NGC 1851, NGC 5824 and NGC 1261. Mon Not R Astron Soc 473:2881–2898.  https://doi.org/10.1093/mnras/stx2353. arXiv:1709.02915 ADSCrossRefGoogle Scholar
  275. Lada CJ, Lada EA (2003) Annu Rev Astron Astrophys 41:57–115.  https://doi.org/10.1146/annurev.astro.41.011802.094844. arXiv:astro-ph/0301540 ADSCrossRefGoogle Scholar
  276. Lagioia EP, Milone AP, Marino AF, Cassisi S, Aparicio AJ, Piotto G, Anderson J, Barbuy B, Bedin LR, Bellini A, Brown T, D’Antona F, Nardiello D, Ortolani S, Pietrinferni A, Renzini A, Salaris M, Sarajedini A, van der Marel R, Vesperini E (2018) The Hubble Space Telescope UV legacy survey of galactic globular clusters—XII. The RGB bumps of multiple stellar populations. Mon Not R Astron Soc 475:4088–4103.  https://doi.org/10.1093/mnras/sty083. arXiv:1801.03395 ADSCrossRefGoogle Scholar
  277. Lamers HJGLM, Baumgardt H, Gieles M (2010) Mass-loss rates and the mass evolution of star clusters. Mon Not R Astron Soc 409:305–328.  https://doi.org/10.1111/j.1365-2966.2010.17309.x. arXiv:1007.1078 ADSCrossRefGoogle Scholar
  278. Langer GE, Hoffman R, Sneden C (1993) Sodium–oxygen abundance anticorrelations and deep-mixing scenarios for globular-cluster giants. Publ Astron Soc Pac 105:301–307.  https://doi.org/10.1086/133147 ADSCrossRefGoogle Scholar
  279. Lapenna E, Mucciarelli A, Ferraro FR, Origlia L, Lanzoni B, Massari D, Dalessandro E (2015) Chemical analysis of asymptotic giant branch stars in M62. Astrophys J 813:97.  https://doi.org/10.1088/0004-637X/813/2/97. arXiv:1509.08917 ADSCrossRefGoogle Scholar
  280. Lapenna E, Lardo C, Mucciarelli A, Salaris M, Ferraro FR, Lanzoni B, Massari D, Stetson PB, Cassisi S, Savino A (2016) Lost and found: evidence of second-generation stars along the asymptotic giant branch of the globular cluster NGC 6752. Astrophys J Lett 826:L1.  https://doi.org/10.3847/2041-8205/826/1/L1. arXiv:1606.09256 ADSCrossRefGoogle Scholar
  281. Lardo C, Bellazzini M, Pancino E, Carretta E, Bragaglia A, Dalessandro E (2011) Mining SDSS in search of multiple populations in globular clusters. Astron Astrophys 525:A114.  https://doi.org/10.1051/0004-6361/201015662. arXiv:1010.4697 ADSCrossRefGoogle Scholar
  282. Lardo C, Milone AP, Marino AF, Mucciarelli A, Pancino E, Zoccali M, Rejkuba M, Carrera R, Gonzalez O (2012) C and N abundances of main sequence and subgiant branch stars in NGC 1851. Astron Astrophys 541:A141.  https://doi.org/10.1051/0004-6361/201118763. arXiv:1202.6176 ADSCrossRefGoogle Scholar
  283. Lardo C, Davies B, Kudritzki RP, Gazak JZ, Evans CJ, Patrick LR, Bergemann M, Plez B (2015) Red supergiants as cosmic abundance probes: the first direct metallicity determination of NGC 4038 in the antennae. Astrophys J 812:160.  https://doi.org/10.1088/0004-637X/812/2/160. arXiv:1509.04937 ADSCrossRefGoogle Scholar
  284. Lardo C, Mucciarelli A, Bastian N (2016) The iron dispersion of the globular cluster M2, revised. Mon Not R Astron Soc 457:51–63.  https://doi.org/10.1093/mnras/stv2802. arXiv:1512.00691 ADSCrossRefGoogle Scholar
  285. Lardo C, Cabrera-Ziri I, Davies B, Bastian N (2017a) Searching for globular cluster-like abundance patterns in young massive clusters—II. Results from the Antennae galaxies. Mon Not R Astron Soc 468:2482–2488.  https://doi.org/10.1093/mnras/stx628. arXiv:1703.04591 ADSCrossRefGoogle Scholar
  286. Lardo C, Salaris M, Savino A, Donati P, Stetson PB, Cassisi S (2017b) Multiple populations along the asymptotic giant branch of the globular cluster M4. Mon Not R Astron Soc 466:3507–3512.  https://doi.org/10.1093/mnras/stw3374. arXiv:1612.08929 ADSCrossRefGoogle Scholar
  287. Larsen SS, Brodie JP, Grundahl F, Strader J (2014) Nitrogen abundances and multiple stellar populations in the globular clusters of the Fornax dSph. Astrophys J 797:15.  https://doi.org/10.1088/0004-637X/797/1/15. arXiv:1409.0541 ADSCrossRefGoogle Scholar
  288. Larsen SS, Baumgardt H, Bastian N, Brodie JP, Grundahl F, Strader J (2015) Radial distributions of sub-populations in the globular cluster M15: a more centrally concentrated primordial population. Astrophys J 804:71.  https://doi.org/10.1088/0004-637X/804/1/71. arXiv:1503.00726 ADSCrossRefGoogle Scholar
  289. Larsen SS, Baumgardt H, Bastian N, Hernandez S (2019) Brodie JP (2019) Hubble Space Telescope photometry of multiple stellar populations in the inner parts of NGC 2419. Astron Astrophys 624:A25.  https://doi.org/10.1051/0004-6361/201834494. arXiv:1902.01416 ADSCrossRefGoogle Scholar
  290. Lattanzio J, Forestini M, Charbonnel C (2000) Nucleosynthesis in intermediate mass AGB stars. Mem Soc Astron Ital 71:737–744 arXiv:astro-ph/9912298 ADSGoogle Scholar
  291. Lee JW (2015) Multiple stellar populations of globular clusters from homogeneous Ca by photometry. I. M22 (NGC 6656). Astrophys J Suppl 219:7.  https://doi.org/10.1088/0067-0049/219/1/7. arXiv:1506.00116 ADSCrossRefGoogle Scholar
  292. Lee JW (2017) Multiple stellar populations of globular clusters from homogeneous Ca–CN photometry. II. M5 (NGC 5904) and a new filter system. Astrophys J 844:77.  https://doi.org/10.3847/1538-4357/aa7b8c. arXiv:1706.07969 ADSCrossRefGoogle Scholar
  293. Lee JW (2018) Multiple stellar populations of globular clusters from homogeneous Ca–CN photometry. III. NGC 6752. Astrophys J Suppl 238:24.  https://doi.org/10.3847/1538-4365/aadcad. arXiv:1901.10107 ADSCrossRefGoogle Scholar
  294. Lee JW (2019) Multiple stellar populations of globular clusters from homogeneous Ca–CN photometry. IV. Toward precision populational tagging, arXiv e-prints. arXiv:1901.09584
  295. Lee JW, Kang YW, Lee J, Lee YW (2009a) Enrichment by supernovae in globular clusters with multiple populations. Nature 462:480–482.  https://doi.org/10.1038/nature08565. arXiv:0911.4798 ADSCrossRefGoogle Scholar
  296. Lee JW, Lee J, Kang YW, Lee YW, Han SI, Joo SJ, Rey SC, Yong D (2009b) Chemical inhomogeneity in red giant branch stars and RR lyrae variables in NGC 1851: two subpopulations in red giant branch. Astrophys J Lett 695:L78–L82.  https://doi.org/10.1088/0004-637X/695/1/L78 ADSCrossRefGoogle Scholar
  297. Leigh N, Giersz M, Webb JJ, Hypki A, De Marchi G, Kroupa P, Sills A (2013) The state of globular clusters at birth: emergence from the gas-embedded phase. Mon Not R Astron Soc 436:3399–3412.  https://doi.org/10.1093/mnras/stt1825. arXiv:1309.7054 ADSCrossRefGoogle Scholar
  298. Letarte B, Hill V, Jablonka P, Tolstoy E, François P, Meylan G (2006) VLT/UVES spectroscopy of individual stars in three globular clusters in the Fornax dwarf spheroidal galaxy. Astron Astrophys 453:547–554.  https://doi.org/10.1051/0004-6361:20054439. arXiv:astro-ph/0603315 ADSCrossRefGoogle Scholar
  299. Li H, Gnedin OY (2019) Star cluster formation in cosmological simulations—III. Dynamical and chemical evolution. Mon Not R Astron Soc 486(3):4030–4043.  https://doi.org/10.1093/mnras/stz1114. arXiv:1810.11036 ADSCrossRefGoogle Scholar
  300. Libralato M, Bellini A, van der Marel RP, Anderson J, Watkins LL, Piotto G, Ferraro FR, Nardiello D, Vesperini E (2018) Hubble Space Telescope proper motion (HSTPROMO) catalogs of galactic globular cluster. VI. Improved data reduction and internal-kinematic analysis of NGC 362. Astrophys J 861:99.  https://doi.org/10.3847/1538-4357/aac6c0. arXiv:1805.05332 ADSCrossRefGoogle Scholar
  301. Lim B, Rauw G, Nazé Y, Sung H, Hwang N, Park BG (2019) Extended main sequence turn-off originating from a broad range of stellar rotational velocities. Nat Astron 3:76–81.  https://doi.org/10.1038/s41550-018-0619-5. arXiv:1811.01593 ADSCrossRefGoogle Scholar
  302. Lim D, Han SI, Lee YW, Roh DG, Sohn YJ, Chun SH, Lee JW, Johnson CI (2015) Low-resolution spectroscopy for the globular clusters with signs of supernova enrichment: M22, NGC 1851, and NGC 288. Astrophys J Suppl 216:19.  https://doi.org/10.1088/0067-0049/216/1/19. arXiv:1412.1832 ADSCrossRefGoogle Scholar
  303. Lin DNC, Richer HB (1992) Young globular clusters in the Milky Way Galaxy. Astrophys J Lett 388:L57–L60.  https://doi.org/10.1086/186329 ADSCrossRefGoogle Scholar
  304. Lind K, Primas F, Charbonnel C, Grundahl F, Asplund M (2009) Signatures of intrinsic Li depletion and Li–Na anti-correlation in the metal-poor globular cluster NGC 6397. Astron Astrophys 503:545–557.  https://doi.org/10.1051/0004-6361/200912524. arXiv:0906.2876 ADSCrossRefGoogle Scholar
  305. Lind K, Koposov SE, Battistini C, Marino AF, Ruchti G, Serenelli A, Worley CC, Alves-Brito A, Asplund M, Barklem PS, Bensby T, Bergemann M, Blanco-Cuaresma S, Bragaglia A, Edvardsson B, Feltzing S, Gruyters P, Heiter U, Jofre P, Korn AJ, Nordlander T, Ryde N, Soubiran C, Gilmore G, Randich S, Ferguson AMN, Jeffries RD, Vallenari A, Allende Prieto C, Pancino E, Recio-Blanco A, Romano D, Smiljanic R, Bellazzini M, Damiani F, Hill V, de Laverny P, Jackson RJ, Lardo C, Zaggia S (2015) The Gaia-ESO Survey: a globular cluster escapee in the Galactic halo. Astron Astrophys 575:L12.  https://doi.org/10.1051/0004-6361/201425554. arXiv:1502.03934 ADSCrossRefGoogle Scholar
  306. Lindblad B (1922) Spectrophotometric methods for determining stellar luminosity. Astrophys J 55.  https://doi.org/10.1086/142660 ADSCrossRefGoogle Scholar
  307. Lombardi JC Jr, Rasio FA, Shapiro SL (1995) On blue straggler formation by direct collisions of main sequence stars. Astrophys J Lett 445:L117–L120.  https://doi.org/10.1086/187903. arXiv:astro-ph/9502106 ADSCrossRefGoogle Scholar
  308. Longmore SN (2015) Heart of darkness: dust obscuration of the central stellar component in globular clusters younger than \(\sim \)100 Myr in multiple stellar population models. Mon Not R Astron Soc 448:L62–L66.  https://doi.org/10.1093/mnrasl/slu203. arXiv:1501.01216 ADSCrossRefGoogle Scholar
  309. Lucatello S, Sollima A, Gratton R, Vesperini E, D’Orazi V, Carretta E, Bragaglia A (2015) The incidence of binaries in globular cluster stellar populations. Astron Astrophys 584:A52.  https://doi.org/10.1051/0004-6361/201526957. arXiv:1509.05014 ADSCrossRefGoogle Scholar
  310. Luck RE, Bond HE (1991) Subgiant CH stars. II. Chemical compositions and the evolutionary connection with barium stars. Astrophys J Suppl 77:515–540.  https://doi.org/10.1086/191615 ADSCrossRefGoogle Scholar
  311. Lynden-Bell D (1967) Statistical mechanics of violent relaxation in stellar systems. Mon Not R Astron Soc 136:101.  https://doi.org/10.1093/mnras/136.1.101 ADSCrossRefGoogle Scholar
  312. Lynden-Bell D, Wood R (1968) The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon Not R Astron Soc 138:495.  https://doi.org/10.1093/mnras/138.4.495 ADSCrossRefGoogle Scholar
  313. Mackereth JT, Schiavon RP, Pfeffer J, Hayes CR, Bovy J, Anguiano B, Allende Prieto C, Hasselquist S, Holtzman J, Johnson JA, Majewski SR, O’Connell R, Shetrone M, Tissera PB, Fernández-Trincado JG (2019) The origin of accreted stellar halo populations in the Milky Way using APOGEE, Gaia, and the EAGLE simulations. Mon Not R Astron Soc 482:3426–3442.  https://doi.org/10.1093/mnras/sty2955. arXiv:1808.00968 ADSCrossRefGoogle Scholar
  314. Mackey AD, Gilmore GF (2003) Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud. Mon Not R Astron Soc 338:85–119.  https://doi.org/10.1046/j.1365-8711.2003.06021.x. arXiv:astro-ph/0209031 ADSCrossRefGoogle Scholar
  315. Mackey AD, Gilmore GF (2003) Surface brightness profiles and structural parameters for globular clusters in the Fornax and Sagittarius dwarf spheroidal galaxies. Mon Not R Astron Soc 340:175–190.  https://doi.org/10.1046/j.1365-8711.2003.06275.x. arXiv:astro-ph/0211396 ADSCrossRefGoogle Scholar
  316. MacLean BT, De Silva GM, Lattanzio J (2015) O, Na, Ba and Eu abundance patterns in open clusters. Mon Not R Astron Soc 446:3556–3561.  https://doi.org/10.1093/mnras/stu2348. arXiv:1411.1185 ADSCrossRefGoogle Scholar
  317. MacLean BT, Campbell SW, De Silva GM, Lattanzio J, D’Orazi V, Simpson JD, Momany Y (2016) An extreme paucity of second population AGB stars in the ‘normal’ globular cluster M4. Mon Not R Astron Soc 460(1):L69–L73.  https://doi.org/10.1093/mnrasl/slw073. arXiv:1604.05040 ADSCrossRefGoogle Scholar
  318. MacLean BT, Campbell SW, Amarsi AM, Nordlander T, Cottrell PL, De Silva GM, Lattanzio J, Constantino T, D’Orazi V, Casagrande L (2018a) On the AGB stars of M 4: a robust disagreement between spectroscopic observations and theory. Mon Not R Astron Soc 481:373–395.  https://doi.org/10.1093/mnras/sty2297. arXiv:1808.06735 ADSCrossRefGoogle Scholar
  319. MacLean BT, Campbell SW, De Silva GM, Lattanzio J, D’Orazi V, Cottrell PL, Momany Y, Casagrande L (2018b) AGB subpopulations in the nearby globular cluster NGC 6397. Mon Not R Astron Soc 475:257–265.  https://doi.org/10.1093/mnras/stx3217. arXiv:1712.03340 ADSCrossRefGoogle Scholar
  320. Magrini L, Randich S, Donati P, Bragaglia A, Adibekyan V, Romano D, Smiljanic R, Blanco-Cuaresma S, Tautvaisiene G, Friel E, Overbeek J, Jacobson H, Cantat-Gaudin T, Vallenari A, Sordo R, Pancino E, Geisler D, San Roman I, Villanova S, Casey A, Hourihane A, Worley CC, Francois P, Gilmore G, Bensby T, Flaccomio E, Korn AJ, Recio-Blanco A, Carraro G, Costado MT, Franciosini E, Heiter U, Jofré P, Lardo C, de Laverny P, Monaco L, Morbidelli L, Sacco G, Sousa SG, Zaggia S (2015) The Gaia-ESO Survey: insights into the inner-disc evolution from open clusters. Astron Astrophys 580:A85.  https://doi.org/10.1051/0004-6361/201526305. arXiv:1505.04039 CrossRefGoogle Scholar
  321. Majewski SR, Schiavon RP, Frinchaboy PM, Allende Prieto C, Barkhouser R, Bizyaev D, Blank B, Brunner S, Burton A, Carrera R, Chojnowski SD, Cunha K, Epstein C, Fitzgerald G, García Pérez AE, Hearty FR, Henderson C, Holtzman JA, Johnson JA, Lam CR, Lawler JE, Maseman P, Mészáros S, Nelson M, Nguyen DC, Nidever DL, Pinsonneault M, Shetrone M, Smee S, Smith VV, Stolberg T, Skrutskie MF, Walker E, Wilson JC, Zasowski G, Anders F, Basu S, Beland S, Blanton MR, Bovy J, Brownstein JR, Carlberg J, Chaplin W, Chiappini C, Eisenstein DJ, Elsworth Y, Feuillet D, Fleming SW, Galbraith-Frew J, García RA, García-Hernández DA, Gillespie BA, Girardi L, Gunn JE, Hasselquist S, Hayden MR, Hekker S, Ivans I, Kinemuchi K, Klaene M, Mahadevan S, Mathur S, Mosser B, Muna D, Munn JA, Nichol RC, O’Connell RW, Parejko JK, Robin AC, Rocha-Pinto H, Schultheis M, Serenelli AM, Shane N, Silva Aguirre V, Sobeck JS, Thompson B, Troup NW, Weinberg DH, Zamora O (2017) The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron J 154:94.  https://doi.org/10.3847/1538-3881/aa784d. arXiv:1509.05420 ADSCrossRefGoogle Scholar
  322. Mapelli M (2017) Rotation in young massive star clusters. Mon Not R Astron Soc 467:3255–3267.  https://doi.org/10.1093/mnras/stx304. arXiv:1702.00415 ADSCrossRefGoogle Scholar
  323. Marín-Franch A, Aparicio A, Piotto G, Rosenberg A, Chaboyer B, Sarajedini A, Siegel M, Anderson J, Bedin LR, Dotter A, Hempel M, King I, Majewski S, Milone AP, Paust N, Reid IN (2009) The ACS survey of galactic globular clusters. VII. Relative ages. Astrophys J 694:1498–1516.  https://doi.org/10.1088/0004-637X/694/2/1498. arXiv:0812.4541 ADSCrossRefGoogle Scholar
  324. Marino AF, Milone AP, Piotto G, Villanova S, Bedin LR, Bellini A, Renzini A (2009) A double stellar generation in the globular cluster NGC 6656 (M 22). Two stellar groups with different iron and s-process element abundances. Astron Astrophys 505:1099–1113.  https://doi.org/10.1051/0004-6361/200911827. arXiv:0905.4058 ADSCrossRefGoogle Scholar
  325. Marino AF, Milone AP, Piotto G, Villanova S, Gratton R, D’Antona F, Anderson J, Bedin LR, Bellini A, Cassisi S, Geisler D, Renzini A, Zoccali M (2011a) Sodium–oxygen anticorrelation and neutron-capture elements in omega centauri stellar populations. Astrophys J 731:64.  https://doi.org/10.1088/0004-637X/731/1/64. arXiv:1102.1653 ADSCrossRefGoogle Scholar
  326. Marino AF, Sneden C, Kraft RP, Wallerstein G, Norris JE, Da Costa G, Milone AP, Ivans II, Gonzalez G, Fulbright JP, Hilker M, Piotto G, Zoccali M, Stetson PB (2011b) The two metallicity groups of the globular cluster M 22: a chemical perspective. Astron Astrophys 532:A8.  https://doi.org/10.1051/0004-6361/201116546. arXiv:1105.1523 CrossRefGoogle Scholar
  327. Marino AF, Villanova S, Milone AP, Piotto G, Lind K, Geisler D, Stetson PB (2011c) Sodium–oxygen anticorrelation among horizontal branch stars in the globular cluster M4. Astrophys J Lett 730:L16.  https://doi.org/10.1088/2041-8205/730/2/L16. arXiv:1012.4931 ADSCrossRefGoogle Scholar
  328. Marino AF, Milone AP, Sneden C, Bergemann M, Kraft RP, Wallerstein G, Cassisi S, Aparicio A, Asplund M, Bedin RL, Hilker M, Lind K, Momany Y, Piotto G, Roederer IU, Stetson PB, Zoccali M (2012) The double sub-giant branch of NGC 6656 (M 22): a chemical characterization. Astron Astrophys 541:A15.  https://doi.org/10.1051/0004-6361/201118381. arXiv:1202.2825 ADSCrossRefGoogle Scholar
  329. Marino AF, Milone AP, Przybilla N, Bergemann M, Lind K, Asplund M, Cassisi S, Catelan M, Casagrande L, Valcarce AAR, Bedin LR, Cortés C, D’Antona F, Jerjen H, Piotto G, Schlesinger K, Zoccali M, Angeloni R (2014) Helium enhanced stars and multiple populations along the horizontal branch of NGC 2808: direct spectroscopic measurements. Mon Not R Astron Soc 437:1609–1627.  https://doi.org/10.1093/mnras/stt1993. arXiv:1310.4527 ADSCrossRefGoogle Scholar
  330. Marino AF, Milone AP, Karakas AI, Casagrande L, Yong D, Shingles L, Da Costa G, Norris JE, Stetson PB, Lind K, Asplund M, Collet R, Jerjen H, Sbordone L, Aparicio A, Cassisi S (2015) Iron and s-elements abundance variations in NGC 5286: comparison with ‘anomalous’ globular clusters and Milky Way satellites. Mon Not R Astron Soc 450:815–845.  https://doi.org/10.1093/mnras/stv420. arXiv:1502.07438 ADSCrossRefGoogle Scholar
  331. Marino AF, Milone AP, Yong D, Da Costa G, Asplund M, Bedin LR, Jerjen H, Nardiello D, Piotto G, Renzini A, Shetrone M (2017) Spectroscopy and Photometry of Multiple Populations along the Asymptotic Giant Branch of NGC 2808 and NGC 6121 (M4). Astrophys J 843:66.  https://doi.org/10.3847/1538-4357/aa7852 ADSCrossRefGoogle Scholar
  332. Marino AF, Milone AP, Casagrande L, Przybilla N, Balaguer-Núñez L, Di Criscienzo M, Serenelli A, Vilardell F (2018a) Discovery of extended main sequence turnoffs in galactic open clusters. Astrophys J Lett 863:L33.  https://doi.org/10.3847/2041-8213/aad868. arXiv:1807.05888 ADSCrossRefGoogle Scholar
  333. Marino AF, Yong D, Milone AP, Piotto G, Lundquist M, Bedin LR, Chené AN, Da Costa G, Asplund M, Jerjen H (2018b) Metallicity variations in the type II globular cluster NGC 6934. Astrophys J 859:81.  https://doi.org/10.3847/1538-4357/aabdea. arXiv:1804.04158 ADSCrossRefGoogle Scholar
  334. Marino AF, Milone AP, Renzini A, D’Antona F, Anderson J, Bedin LR, Bellini A, Cordoni G, Lagioia EP, Piotto G, Tailo M (2019) The Hubble Space Telescope UV legacy survey of galactic globular clusters. XIX. A chemical tagging of the multiple stellar populations over the chromosome maps. Mon Not R Astron Soc 487:3815–3844.  https://doi.org/10.1093/mnras/stz1415. arXiv:1904.05180 ADSCrossRefGoogle Scholar
  335. Martell SL, Grebel EK (2010) Light-element abundance variations in the Milky Way halo. Astron Astrophys 519:A14.  https://doi.org/10.1051/0004-6361/201014135. arXiv:1005.4070 ADSCrossRefGoogle Scholar
  336. Martell SL, Smith GH, Briley MM (2008) Deep mixing and metallicity: carbon depletion in globular cluster giants. Astron J 136:2522–2532.  https://doi.org/10.1088/0004-6256/136/6/2522. arXiv:0809.4470 ADSCrossRefGoogle Scholar
  337. Martell SL, Smolinski JP, Beers TC, Grebel EK (2011) Building the Galactic halo from globular clusters: evidence from chemically unusual red giants. Astron Astrophys 534:A136.  https://doi.org/10.1051/0004-6361/201117644. arXiv:1109.3916 ADSCrossRefGoogle Scholar
  338. Martell SL, Shetrone MD, Lucatello S, Schiavon RP, Mészáros S, Allende Prieto C, García-Hernández DA, Beers TC, Nidever DL (2016) Chemical tagging in the SDSS-III/APOGEE survey: new identifications of halo stars with globular cluster origins. Astrophys J 825:146.  https://doi.org/10.3847/0004-637X/825/2/146. arXiv:1605.05792 ADSCrossRefGoogle Scholar
  339. Martocchia S, Bastian N, Usher C, Kozhurina-Platais V, Niederhofer F, Cabrera-Ziri I, Dalessandro E, Hollyhead K, Kacharov N, Lardo C, Larsen S, Mucciarelli A, Platais I, Salaris M, Cordero M, Geisler D, Hilker M, Li C, Mackey D (2017) The search for multiple populations in Magellanic Cloud Clusters—III. No evidence for multiple populations in the SMC cluster NGC 419. Mon Not R Astron Soc 468:3150–3158.  https://doi.org/10.1093/mnras/stx660. arXiv:1703.04631 ADSCrossRefGoogle Scholar
  340. Martocchia S, Cabrera-Ziri I, Lardo C, Dalessandro E, Bastian N, Kozhurina-Platais V, Usher C, Niederhofer F, Cordero M, Geisler D, Hollyhead K, Kacharov N, Larsen S, Li C, Mackey D, Hilker M, Mucciarelli A, Platais I, Salaris M (2018a) Age as a major factor in the onset of multiple populations in stellar clusters. Mon Not R Astron Soc 473:2688–2700.  https://doi.org/10.1093/mnras/stx2556. arXiv:1710.00831 ADSCrossRefGoogle Scholar
  341. Martocchia S, Niederhofer F, Dalessandro E, Bastian N, Kacharov N, Usher C, Cabrera-Ziri I, Lardo C, Cassisi S, Geisler D, Hilker M, Hollyhead K, Kozhurina-Platais V, Larsen S, Mackey D, Mucciarelli A, Platais I, Salaris M (2018b) The search for multiple populations in magellanic cloud clusters—IV. Coeval multiple stellar populations in the young star cluster NGC 1978. Mon Not R Astron Soc 477:4696–4705.  https://doi.org/10.1093/mnras/sty916. arXiv:1804.04141 ADSCrossRefGoogle Scholar
  342. Massari D, Mucciarelli A, Dalessandro E, Bellazzini M, Cassisi S, Fiorentino G, Ibata RA, Lardo C, Salaris M (2017) The chemical composition of the low-mass Galactic globular cluster NGC 6362. Mon Not R Astron Soc 468:1249–1258.  https://doi.org/10.1093/mnras/stx549. arXiv:1703.00385 ADSCrossRefGoogle Scholar
  343. Masseron T, García-Hernández DA, Mészáros S, Zamora O, Dell’Agli F, Allende Prieto C, Edvardsson B, Shetrone M, Plez B, Fernández-Trincado JG, Cunha K, Jönsson H, Geisler D, Beers TC, Cohen RE (2019) Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code. I. The northern clusters. Astron Astrophys 622:A191.  https://doi.org/10.1051/0004-6361/201834550. arXiv:1812.08817 ADSCrossRefGoogle Scholar
  344. Mastrobuono-Battisti A, Perets HB (2013) Evolution of second-generation stars in stellar disks of globular and nuclear clusters: \(\omega \) Centauri as a test case. Astrophys J 779:85.  https://doi.org/10.1088/0004-637X/779/1/85. arXiv:1304.6086 ADSCrossRefGoogle Scholar
  345. Mateluna R, Geisler D, Villanova S, Carraro G, Grocholski A, Sarajedini A, Cole A, Smith V (2012) Chemical abundances in the old LMC globular cluster Hodge 11. Astron Astrophys 548:A82.  https://doi.org/10.1051/0004-6361/201219750 ADSCrossRefGoogle Scholar
  346. McClure RD, Fletcher JM, Nemec JM (1980) The binary nature of the barium stars. Astrophys J Lett 238:L35–L38.  https://doi.org/10.1086/183252 ADSCrossRefGoogle Scholar
  347. McConnachie AW (2012) The observed properties of dwarf galaxies in and around the local group. Astron J 144:4.  https://doi.org/10.1088/0004-6256/144/1/4. arXiv:1204.1562 ADSCrossRefGoogle Scholar
  348. McCrea WH (1964) Extended main-sequence of some stellar clusters. Mon Not R Astron Soc 128:147.  https://doi.org/10.1093/mnras/128.2.147 ADSCrossRefGoogle Scholar
  349. McLaughlin DE, Fall SM (2008) Shaping the globular cluster mass function by stellar-dynamical evaporation. Astrophys J 679:1272–1287.  https://doi.org/10.1086/533485. arXiv:0704.0080 ADSCrossRefGoogle Scholar
  350. McLaughlin DE, van der Marel RP (2005) Resolved massive star clusters in the milky way and its satellites: brightness profiles and a catalog of fundamental parameters. Astrophys J Suppl 161:304–360.  https://doi.org/10.1086/497429. arXiv:astro-ph/0605132 ADSCrossRefGoogle Scholar
  351. McMillan SLW, Vesperini E, Portegies Zwart SF (2007) A dynamical origin for early mass segregation in young star clusters. Astrophys J Lett 655:L45–L49.  https://doi.org/10.1086/511763. arXiv:astro-ph/0609515 ADSCrossRefGoogle Scholar
  352. McSaveney JA, Wood PR, Scholz M, Lattanzio JC, Hinkle KH (2007) Abundances in intermediate-mass AGB stars undergoing third dredge-up and hot-bottom burning. Mon Not R Astron Soc 378:1089–1100.  https://doi.org/10.1111/j.1365-2966.2007.11845.x. arXiv:0704.1907 ADSCrossRefGoogle Scholar
  353. Meléndez J, Asplund M, Gustafsson B, Yong D (2009) The peculiar solar composition and its possible relation to planet formation. Astrophys J Lett 704(1):L66–L70.  https://doi.org/10.1088/0004-637X/704/1/L66. arXiv:0909.2299 ADSCrossRefGoogle Scholar
  354. Mészáros S, Martell SL, Shetrone M, Lucatello S, Troup NW, Bovy J, Cunha K, García-Hernández DA, Overbeek JC, Allende Prieto C, Beers TC, Frinchaboy PM, García Pérez AE, Hearty FR, Holtzman J, Majewski SR, Nidever DL, Schiavon RP, Schneider DP, Sobeck JS, Smith VV, Zamora O, Zasowski G (2015) Exploring anticorrelations and light element variations in northern globular clusters observed by the APOGEE survey. Astron J 149:153.  https://doi.org/10.1088/0004-6256/149/5/153. arXiv:1501.05127 ADSCrossRefGoogle Scholar
  355. Mikolaitis Š, Tautvaisiene G, Gratton R, Bragaglia A, Carretta E (2010) Chemical composition of clump stars in the open cluster NGC 6134. Mon Not R Astron Soc 407:1866–1874.  https://doi.org/10.1111/j.1365-2966.2010.17030.x. arXiv:1005.3944 ADSCrossRefGoogle Scholar
  356. Milone AP, Bedin LR, Piotto G, Anderson J (2009) Multiple stellar populations in Magellanic Cloud clusters. I. An ordinary feature for intermediate age globulars in the LMC? Astron Astrophys 497:755–771.  https://doi.org/10.1051/0004-6361/200810870. arXiv:0810.2558 ADSCrossRefGoogle Scholar
  357. Milone AP, Marino AF, Cassisi S, Piotto G, Bedin LR, Anderson J, Allard F, Aparicio A, Bellini A, Buonanno R, Monelli M, Pietrinferni A (2012a) The infrared eye of the wide-field camera 3 on the Hubble Space Telescope reveals multiple main sequences of very low mass stars in NGC 2808. Astrophys J Lett 754:L34.  https://doi.org/10.1088/2041-8205/754/2/L34. arXiv:1206.5529 ADSCrossRefGoogle Scholar
  358. Milone AP, Marino AF, Piotto G, Bedin LR, Anderson J, Aparicio A, Cassisi S, Rich RM (2012b) A double main sequence in the globular cluster NGC 6397. Astrophys J 745:27.  https://doi.org/10.1088/0004-637X/745/1/27. arXiv:1110.1077 ADSCrossRefGoogle Scholar
  359. Milone AP, Piotto G, Bedin LR, Aparicio A, Anderson J, Sarajedini A, Marino AF, Moretti A, Davies MB, Chaboyer B, Dotter A, Hempel M, Marín-Franch A, Majewski S, Paust NEQ, Reid IN, Rosenberg A, Siegel M (2012c) The ACS survey of Galactic globular clusters. XII. Photometric binaries along the main sequence. Astron Astrophys 540:A16.  https://doi.org/10.1051/0004-6361/201016384. arXiv:1111.0552 ADSCrossRefGoogle Scholar
  360. Milone AP, Piotto G, Bedin LR, Cassisi S, Anderson J, Marino AF, Pietrinferni A, Aparicio A (2012d) Luminosity and mass functions of the three main sequences of the globular cluster NGC 2808. Astron Astrophys 537:A77.  https://doi.org/10.1051/0004-6361/201116539. arXiv:1108.2391 ADSCrossRefGoogle Scholar
  361. Milone AP, Piotto G, Bedin LR, King IR, Anderson J, Marino AF, Bellini A, Gratton R, Renzini A, Stetson PB, Cassisi S, Aparicio A, Bragaglia A, Carretta E, D’Antona F, Di Criscienzo M, Lucatello S, Monelli M, Pietrinferni A (2012e) Multiple stellar populations in 47 Tucanae. Astrophys J 744:58.  https://doi.org/10.1088/0004-637X/744/1/58. arXiv:1109.0900 ADSCrossRefGoogle Scholar
  362. Milone AP, Marino AF, Piotto G, Bedin LR, Anderson J, Aparicio A, Bellini A, Cassisi S, D’Antona F, Grundahl F, Monelli M, Yong D (2013) A WFC3/HST view of the three stellar populations in the globular cluster NGC 6752. Astrophys J 767:120.  https://doi.org/10.1088/0004-637X/767/2/120. arXiv:1301.7044 ADSCrossRefGoogle Scholar
  363. Milone AP, Marino AF, Bedin LR, Piotto G, Cassisi S, Dieball A, Anderson J, Jerjen H, Asplund M, Bellini A, Brogaard K, Dotter A, Giersz M, Heggie DC, Knigge C, Rich RM, van den Berg M, Buonanno R (2014a) The M 4 Core Project with HST—II. Multiple stellar populations at the bottom of the main sequence. Mon Not R Astron Soc 439:1588–1595.  https://doi.org/10.1093/mnras/stu030. arXiv:1401.1091 ADSCrossRefGoogle Scholar
  364. Milone AP, Marino AF, Dotter A, Norris JE, Jerjen H, Piotto G, Cassisi S, Bedin LR, Recio Blanco A, Sarajedini A, Asplund M, Monelli M, Aparicio A (2014b) Global and nonglobal parameters of horizontal-branch morphology of globular clusters. Astrophys J 785:21.  https://doi.org/10.1088/0004-637X/785/1/21. arXiv:1312.4169 ADSCrossRefGoogle Scholar
  365. Milone AP, Marino AF, Piotto G, Bedin LR, Anderson J, Renzini A, King IR, Bellini A, Brown TM, Cassisi S, D’Antona F, Jerjen H, Nardiello D, Salaris M, Marel RP, Vesperini E, Yong D, Aparicio A, Sarajedini A, Zoccali M (2015a) The Hubble Space Telescope UV legacy survey of galactic globular clusters—II. The seven stellar populations of NGC 7089 (M2). Mon Not R Astron Soc 447:927–938.  https://doi.org/10.1093/mnras/stu2446. arXiv:1411.5043 ADSCrossRefGoogle Scholar
  366. Milone AP, Marino AF, Piotto G, Renzini A, Bedin LR, Anderson J, Cassisi S, D’Antona F, Bellini A, Jerjen H, Pietrinferni A, Ventura P (2015b) The Hubble Space Telescope UV legacy survey of galactic globular clusters. III. A quintuple stellar population in NGC 2808. Astrophys J 808:51.  https://doi.org/10.1088/0004-637X/808/1/51. arXiv:1505.05934 ADSCrossRefGoogle Scholar
  367. Milone AP, Marino AF, Bedin LR, Dotter A, Jerjen H, Kim D, Nardiello D, Piotto G, Cong J (2016) The binary populations of eight globular clusters in the outer halo of the Milky Way. Mon Not R Astron Soc 455:3009–3019.  https://doi.org/10.1093/mnras/stv2415. arXiv:1510.05086 ADSCrossRefGoogle Scholar
  368. Milone AP, Marino AF, Bedin LR, Anderson J, Apai D, Bellini A, Bergeron P, Burgasser AJ, Dotter A, Rees JM (2017) The HST large programme on \(\omega \) Centauri–I. Multiple stellar populations at the bottom of the main sequence probed in NIR-Optical. Mon Not R Astron Soc 469:800–812.  https://doi.org/10.1093/mnras/stx836. arXiv:1704.00418 ADSCrossRefGoogle Scholar
  369. Milone AP, Marino AF, Di Criscienzo M, D’Antona F, Bedin LR, Da Costa G, Piotto G, Tailo M, Dotter A, Angeloni R, Anderson J, Jerjen H, Li C, Dupree A, Granata V, Lagioia EP, Mackey AD, Nardiello D, Vesperini E (2018a) Multiple stellar populations in Magellanic Cloud clusters—VI. A survey of multiple sequences and Be stars in young clusters. Mon Not R Astron Soc 477:2640–2663.  https://doi.org/10.1093/mnras/sty661. arXiv:1802.10538 ADSCrossRefGoogle Scholar
  370. Milone AP, Marino AF, Mastrobuono-Battisti A, Lagioia EP (2018b) Gaia unveils the kinematics of multiple stellar populations in 47 Tucanae. Mon Not R Astron Soc 479:5005–5011.  https://doi.org/10.1093/mnras/sty1873. arXiv:1807.03511 ADSCrossRefGoogle Scholar
  371. Milone AP, Marino AF, Renzini A, D’Antona F, Anderson J, Barbuy B, Bedin LR, Bellini A, Brown TM, Cassisi S, Cordoni G, Lagioia EP, Nardiello D, Ortolani S, Piotto G, Sarajedini A, Tailo M, van der Marel RP, Vesperini E (2018c) The Hubble Space Telescope UV legacy survey of galactic globular clusters—XVI. The helium abundance of multiple populations. Mon Not R Astron Soc 481:5098–5122.  https://doi.org/10.1093/mnras/sty2573. arXiv:1809.05006 ADSCrossRefGoogle Scholar
  372. Milone AP, Marino AF, Bedin LR, Anderson J, Apai D, Bellini A, Dieball A, Salaris M, Libralato M, Nardiello D, Bergeron P, Burgasser AJ, Rees JM, Rich RM, Richer HB (2019a) The HST Large Programme on NGC 6752—II. Multiple populations at the bottom of the main sequence probed in NIR. Mon Not R Astron Soc 484(3):4046–4053.  https://doi.org/10.1093/mnras/stz277. arXiv:1901.07230 ADSCrossRefGoogle Scholar
  373. Milone AP, Marino AF, Bedin LR, Anderson J, Apai D, Bellini A, Dieball A, Salaris M, Libralato M, Nardiello D, Bergeron P, Burgasser AJ, Rees JM, Rich RM, Richer HB (2019b) The HST Large Programme on NGC 6752. II. Multiple populations at the bottom of the main sequence probed in NIR. Mon Not R Astron Soc.  https://doi.org/10.1093/mnras/stz277. arXiv:1901.07230 ADSCrossRefGoogle Scholar
  374. Moe M, Di Stefano R (2017) Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys J Suppl 230:15.  https://doi.org/10.3847/1538-4365/aa6fb6. arXiv:1606.05347 ADSCrossRefGoogle Scholar
  375. Moe M, Kratter KM, Badenes C (2019) The close binary fraction of solar-type stars is strongly anti-correlated with metallicity. Astrophys J 875:61.  https://doi.org/10.3847/1538-4357/ab0d88. arXiv:1808.02116 ADSCrossRefGoogle Scholar
  376. Moehler S, Sweigart AV, Landsman WB, Hammer NJ, Dreizler S (2004) Spectroscopic analyses of the blue hook stars in NGC 2808: a more stringent test of the late hot flasher scenario. Astron Astrophys 415:313–323.  https://doi.org/10.1051/0004-6361:20034505. arXiv:astro-ph/0311215 ADSCrossRefGoogle Scholar
  377. Monaco L, Bonifacio P, Sbordone L, Villanova S, Pancino E (2010) The lithium content of \(\omega \). Centauri New clues to the cosmological Li problem from old stars in external galaxies. Astron Astrophys 519:L3.  https://doi.org/10.1051/0004-6361/201015162. arXiv:1008.1817 ADSCrossRefGoogle Scholar
  378. Monaco L, Villanova S, Bonifacio P, Caffau E, Geisler D, Marconi G, Momany Y, Ludwig HG (2012) Lithium and sodium in the globular cluster. Detection of a Li-rich dwarf star: preservation or pollution? Astron Astrophys 539:A157.  https://doi.org/10.1051/0004-6361/201117709. arXiv:1108.0138 ADSCrossRefGoogle Scholar
  379. Monelli M, Milone AP, Stetson PB, Marino AF, Cassisi S, del Pino MA, Salaris M, Aparicio A, Asplund M, Grundahl F, Piotto G, Weiss A, Carrera R, Cebrián M, Murabito S, Pietrinferni A, Sbordone L (2013) The SUMO project I. A survey of multiple populations in globular clusters. Mon Not R Astron Soc 431:2126–2149.  https://doi.org/10.1093/mnras/stt273. arXiv:1303.5187 ADSCrossRefGoogle Scholar
  380. Moody K, Sigurdsson S (2009) Modeling the retention probability of black holes in globular clusters: kicks and rates. Astrophys J 690:1370–1377.  https://doi.org/10.1088/0004-637X/690/2/1370. arXiv:0809.1617 ADSCrossRefGoogle Scholar
  381. Moretti A, de Angeli F, Piotto G (2008) Environmental effects on the globular cluster blue straggler population: a statistical approach. Astron Astrophys 483:183–197.  https://doi.org/10.1051/0004-6361:20078416 ADSCrossRefGoogle Scholar
  382. Muñoz C, Villanova S, Geisler D, Saviane I, Dias B, Cohen RE, Mauro F (2017) The peculiar Na–O anticorrelation of the bulge globular cluster NGC 6440. Astron Astrophys 605:A12.  https://doi.org/10.1051/0004-6361/201730468. arXiv:1705.02684 ADSCrossRefGoogle Scholar
  383. Muñoz C, Geisler D, Villanova S, Saviane I, Cortés CC, Dias B, Cohen RE, Mauro F, Moni Bidin C (2018) Chemical analysis of NGC 6528: one of the most metal-rich bulge globular clusters. Astron Astrophys 620:A96.  https://doi.org/10.1051/0004-6361/201833373. arXiv:1809.04164 ADSCrossRefGoogle Scholar
  384. Mucciarelli A, Origlia L, Ferraro FR, Pancino E (2009) Looking outside the galaxy: the discovery of chemical anomalies in three old large magellanic cloud clusters. Astrophys J Lett 695:L134–L139.  https://doi.org/10.1088/0004-637X/695/2/L134. arXiv:0902.4778 ADSCrossRefGoogle Scholar
  385. Mucciarelli A, Salaris M, Lovisi L, Ferraro FR, Lanzoni B, Lucatello S, Gratton RG (2011) Lithium abundance in the globular cluster M4: from the turn-off to the red giant branch bump. Mon Not R Astron Soc 412:81–94.  https://doi.org/10.1111/j.1365-2966.2010.17884.x. arXiv:1010.3879 ADSCrossRefGoogle Scholar
  386. Mucciarelli A, Bellazzini M, Ibata R, Merle T, Chapman SC, Dalessandro E, Sollima A (2012) News from the Galactic suburbia: the chemical composition of the remote globular cluster NGC 2419. Mon Not R Astron Soc 426:2889–2900.  https://doi.org/10.1111/j.1365-2966.2012.21847.x. arXiv:1208.0195 ADSCrossRefGoogle Scholar
  387. Mucciarelli A, Salaris M, Bonifacio P (2012b) Giants reveal what dwarfs conceal: Li abundance in lower red giant branch stars as diagnostic of the primordial Li. Mon Not R Astron Soc 419:2195–2205.  https://doi.org/10.1111/j.1365-2966.2011.19870.x. arXiv:1109.4589 ADSCrossRefGoogle Scholar
  388. Mucciarelli A, Bellazzini M, Catelan M, Dalessandro E, Amigo P, Correnti M, Cortés C, D’Orazi V (2013) NGC 5694: another foster son of the Galactic halo. Mon Not R Astron Soc 435:3667–3680.  https://doi.org/10.1093/mnras/stt1558. arXiv:1308.6653 ADSCrossRefGoogle Scholar
  389. Mucciarelli A, Dalessandro E, Ferraro FR, Origlia L, Lanzoni B (2014a) No evidence of chemical anomalies in the bimodal turnoff cluster NGC 1806 in the Large Magellanic Cloud. Astrophys J Lett 793:L6.  https://doi.org/10.1088/2041-8205/793/1/L6. arXiv:1409.0259 ADSCrossRefGoogle Scholar
  390. Mucciarelli A, Salaris M, Bonifacio P, Monaco L, Villanova S (2014b) The cosmological lithium problem outside the Galaxy: the Sagittarius globular cluster M54. Mon Not R Astron Soc 444:1812–1820.  https://doi.org/10.1093/mnras/stu1522. arXiv:1407.7596 ADSCrossRefGoogle Scholar
  391. Mucciarelli A, Bellazzini M, Merle T, Plez B, Dalessandro E, Ibata R (2015a) Potassium: a new actor on the globular cluster chemical evolution stage. The case of NGC 2808. Astrophys J 801:68.  https://doi.org/10.1088/0004-637X/801/1/68. arXiv:1501.03161 ADSCrossRefGoogle Scholar
  392. Mucciarelli A, Lapenna E, Massari D, Pancino E, Stetson PB, Ferraro FR, Lanzoni B, Lardo C (2015b) A chemical Trompe-L’oeil: no iron spread in the globular cluster M22. Astrophys J 809:128.  https://doi.org/10.1088/0004-637X/809/2/128. arXiv:1507.01596 ADSCrossRefGoogle Scholar
  393. Mucciarelli A, Dalessandro E, Massari D, Bellazzini M, Ferraro FR, Lanzoni B, Lardo C, Salaris M, Cassisi S (2016) NGC 6362: the least massive globular cluster with chemically distinct multiple populations. Astrophys J 824:73.  https://doi.org/10.3847/0004-637X/824/2/73. arXiv:1604.04151 ADSCrossRefGoogle Scholar
  394. Mucciarelli A, Lapenna E, Ferraro FR, Lanzoni B (2018) The chemical composition of NGC 5824, a globular cluster without iron spread but with an extreme Mg–Al anticorrelation. Astrophys J 859:75.  https://doi.org/10.3847/1538-4357/aaba80. arXiv:1803.09759 ADSCrossRefGoogle Scholar
  395. Mucciarelli A, Lapenna E, Lardo C, Bonifacio P, Ferraro FR, Lanzoni B (2019) Confirming the presence of second-population stars and the iron discrepancy along the AGB of the globular cluster NGC 6752. Astrophys J 870:124.  https://doi.org/10.3847/1538-4357/aaf3a4. arXiv:1811.10626 ADSCrossRefGoogle Scholar
  396. Myeong GC, Evans NW, Belokurov V, Sanders JL, Koposov SE (2018a) Discovery of new retrograde substructures: the shards of \(\omega \) Centauri? Mon Not R Astron Soc 478:5449–5459.  https://doi.org/10.1093/mnras/sty1403 ADSCrossRefGoogle Scholar
  397. Myeong GC, Evans NW, Belokurov V, Sanders JL, Koposov SE (2018b) The Milky Way Halo in action space. Astrophys J Lett 856:L26.  https://doi.org/10.3847/2041-8213/aab613. arXiv:1802.03351 ADSCrossRefGoogle Scholar
  398. Myeong GC, Evans NW, Belokurov V, Sanders JL, Koposov SE (2018c) The sausage globular clusters. Astrophys J Lett 863:L28.  https://doi.org/10.3847/2041-8213/aad7f7. arXiv:1805.00453 ADSCrossRefGoogle Scholar
  399. Nardiello D, Piotto G, Milone AP, Marino AF, Bedin LR, Anderson J, Aparicio A, Bellini A, Cassisi S, D’Antona F, Hidalgo S, Ortolani S, Pietrinferni A, Renzini A, Salaris M, Marel RP, Vesperini E (2015) The Hubble Space Telescope UV legacy survey of galactic globular clusters—IV. Helium content and relative age of multiple stellar populations within NGC 6352. Mon Not R Astron Soc 451:312–322.  https://doi.org/10.1093/mnras/stv971. arXiv:1504.07876 ADSCrossRefGoogle Scholar
  400. Nardiello D, Libralato M, Piotto G, Anderson J, Bellini A, Aparicio A, Bedin LR, Cassisi S, Granata V, King IR, Lucertini F, Marino AF, Milone AP, Ortolani S, Platais I, van der Marel RP (2018a) The Hubble Space Telescope UV legacy survey of galactic globular clusters—XVII. Public catalogue release. Mon Not R Astron Soc 481:3382–3393.  https://doi.org/10.1093/mnras/sty2515. arXiv:1809.04300 ADSCrossRefGoogle Scholar
  401. Nardiello D, Milone AP, Piotto G, Anderson J, Bedin LR, Bellini A, Cassisi S, Libralato M, Marino AF (2018b) The Hubble Space Telescope UV legacy survey of galactic globular clusters—XIV. Multiple stellar populations within M 15 and their radial distribution. Mon Not R Astron Soc 477:2004–2019.  https://doi.org/10.1093/mnras/sty719. arXiv:1803.05979 ADSCrossRefGoogle Scholar
  402. Nataf DM, Gould A, Pinsonneault MH, Stetson PB (2011) The gradients in the 47 tuc red giant branch bump and horizontal branch are consistent with a centrally concentrated, helium-enriched second stellar generation. Astrophys J 736:94.  https://doi.org/10.1088/0004-637X/736/2/94. arXiv:1102.3916 ADSCrossRefGoogle Scholar
  403. Nataf DM, Wyse R, Schiavon RP, Ting YS, Minniti D, Cohen RE, Fernández-Trincado JG, Geisler D, Nitschelm C, Frinchaboy PM (2019) The relationship between globular cluster mass, metallicity, and light element abundance variations. Astron J 158:14.  https://doi.org/10.3847/1538-3881/ab1a27. arXiv:1904.07884 ADSCrossRefGoogle Scholar
  404. Navarrete C, Chanamé J, Ramírez I, Meza A, Anglada-Escudé G, Shkolnik E (2015) The Kapteyn moving group is not tidal debris from \(\omega \) Centauri. Astrophys J 808:103.  https://doi.org/10.1088/0004-637X/808/1/103. arXiv:1506.02041 ADSCrossRefGoogle Scholar
  405. Niederhofer F, Bastian N, Kozhurina-Platais V, Hilker M, de Mink SE, Cabrera-Ziri I, Li C, Ercolano B (2016) Controversial age spreads from the main sequence turn-off and red clump in intermediate-age clusters in the LMC. Astron Astrophys 586:A148.  https://doi.org/10.1051/0004-6361/201526484. arXiv:1510.08476 CrossRefGoogle Scholar
  406. Niederhofer F, Bastian N, Kozhurina-Platais V, Larsen S, Hollyhead K, Lardo C, Cabrera-Ziri I, Kacharov N, Platais I, Salaris M, Cordero M, Dalessandro E, Geisler D, Hilker M, Li C, Mackey D, Mucciarelli A (2017a) The search for multiple populations in Magellanic Cloud clusters—II. The detection of multiple populations in three intermediate-age SMC clusters. Mon Not R Astron Soc 465:4159–4165.  https://doi.org/10.1093/mnras/stw3084. arXiv:1612.00400 ADSCrossRefGoogle Scholar
  407. Niederhofer F, Bastian N, Kozhurina-Platais V, Larsen S, Salaris M, Dalessandro E, Mucciarelli A, Cabrera-Ziri I, Cordero M, Geisler D, Hilker M, Hollyhead K, Kacharov N, Lardo C, Li C, Mackey D, Platais I (2017b) The search for multiple populations in Magellanic Cloud clusters—I. Two stellar populations in the Small Magellanic Cloud globular cluster NGC 121. Mon Not R Astron Soc 464:94–103.  https://doi.org/10.1093/mnras/stw2269. arXiv:1609.01595 ADSCrossRefGoogle Scholar
  408. Nissen PE, Schuster WJ (2010) Two distinct halo populations in the solar neighborhood. Evidence from stellar abundance ratios and kinematics. Astron Astrophys 511:L10.  https://doi.org/10.1051/0004-6361/200913877. arXiv:1002.4514 ADSCrossRefGoogle Scholar
  409. Norris J, Smith GH (1983) The cyanogen distribution of the giants in NGC 2808. Astrophys J 275:120–124.  https://doi.org/10.1086/161517 ADSCrossRefGoogle Scholar
  410. Norris J, Cottrell PL, Freeman KC, Da Costa GS (1981) The abundance spread in the giants of NGC 6752. Astrophys J 244:205–220.  https://doi.org/10.1086/158698 ADSCrossRefGoogle Scholar
  411. Norris JE (2004) The helium abundances of \(\omega \) Centauri. Astrophys J Lett 612:L25–L28.  https://doi.org/10.1086/423986 ADSCrossRefGoogle Scholar
  412. Norris JE, Da Costa GS (1995) The giant branch of \(\omega \) Centauri. IV. Abundance patterns based on Echelle spectra of 40 red giants. Astrophys J 447:680.  https://doi.org/10.1086/175909 ADSCrossRefGoogle Scholar
  413. Odenkirchen M, Grebel EK, Rockosi CM, Dehnen W, Ibata R, Rix HW, Stolte A, Wolf C, Anderson JE Jr, Bahcall NA, Brinkmann J, Csabai I, Hennessy G, Hindsley RB, Ivezić Ž, Lupton RH, Munn JA, Pier JR, Stoughton C, York DG (2001) Detection of massive tidal tails around the globular Cluster Palomar 5 with Sloan Digital Sky Survey commissioning data. Astrophys J Lett 548:L165–L169.  https://doi.org/10.1086/319095. arXiv:astro-ph/0012311 ADSCrossRefGoogle Scholar
  414. Odenkirchen M, Grebel EK, Dehnen W, Rix HW, Yanny B, Newberg HJ, Rockosi CM, Martínez-Delgado D, Brinkmann J, Pier JR (2003) The extended tails of Palomar 5: A 10 deg arc of globular cluster tidal debris. Astron J 126:2385–2407.  https://doi.org/10.1086/378601. arXiv:astro-ph/0307446 ADSCrossRefGoogle Scholar
  415. Oh KS, Lin DNC (1992) Tidal evolution of globular clusters. II. The effects of Galactic tidal field and diffusion. Astrophys J 386:519–538.  https://doi.org/10.1086/171037 ADSCrossRefGoogle Scholar
  416. Olszewski EW, Schommer RA, Suntzeff NB, Harris HC (1991) Spectroscopy of giants in LMC clusters. I. Velocities, abundances, and the age-metallicity relation. Astron J 101:515–537.  https://doi.org/10.1086/115701 ADSCrossRefGoogle Scholar
  417. Olszewski EW, Saha A, Knezek P, Subramaniam A, de Boer T, Seitzer P (2009) A 500 Parsec halo surrounding the galactic globular NGC 1851. Astron J 138:1570–1576.  https://doi.org/10.1088/0004-6256/138/6/1570. arXiv:0909.1755 ADSCrossRefGoogle Scholar
  418. O’Malley EM, Knaizev A, McWilliam A, Chaboyer B (2017) High-resolution spectroscopic abundances of red giant branch stars in NGC 6681. Astrophys J 846:23.  https://doi.org/10.3847/1538-4357/aa7b72. arXiv:1706.06962 ADSCrossRefGoogle Scholar
  419. Ostriker JP, Spitzer L Jr, Chevalier RA (1972) On the evolution of globular clusters. Astrophys J Lett 176:L51.  https://doi.org/10.1086/181018 ADSCrossRefGoogle Scholar
  420. Otsuki K, Honda S, Aoki W, Kajino T, Mathews GJ (2006) Neutron-capture elements in the metal-poor globular cluster M15. Astrophys J Lett 641:L117–L120.  https://doi.org/10.1086/504106. arXiv:astro-ph/0603328 ADSCrossRefGoogle Scholar
  421. Overbeek JC, Friel ED, Donati P, Smiljanic R, Jacobson HR, Hatzidimitriou D, Held EV, Magrini L, Bragaglia A, Randich S, Vallenari A, Cantat-Gaudin T, Tautvaisiene G, Jiménez-Esteban F, Frasca A, Geisler D, Villanova S, Tang B, Muñoz C, Marconi G, Carraro G, San Roman I, Drazdauskas A, Ženoviene R, Gilmore G, Jeffries RD, Flaccomio E, Pancino E, Bayo A, Costado MT, Damiani F, Jofré P, Monaco L, Prisinzano L, Sousa SG, Zaggia S (2017) The Gaia-ESO Survey: the inner disk, intermediate-age open cluster Trumpler 23. Astron Astrophys 598:A68.  https://doi.org/10.1051/0004-6361/201629345. arXiv:1611.00859 CrossRefGoogle Scholar
  422. Pace G, Recio-Blanco A, Piotto G, Momany Y (2006) Abundance anomalies in hot horizontal branch stars of the Galactic globular cluster NGC 2808. Astron Astrophys 452:493–501.  https://doi.org/10.1051/0004-6361:20054593 ADSCrossRefGoogle Scholar
  423. Pace G, Castro M, Meléndez J, Théado S, do Nascimento JD Jr, (2012) Lithium in M 67: from the main sequence to the red giant branch. Astron Astrophys 541:A150.  https://doi.org/10.1051/0004-6361/201117704. arXiv:1203.4440 ADSCrossRefGoogle Scholar
  424. Pancino E (2018) Globular cluster chemistry in fast-rotating dwarf stars belonging to intermediate-age open clusters. Astron Astrophys 614:A80.  https://doi.org/10.1051/0004-6361/201732351. arXiv:1802.06654 ADSCrossRefGoogle Scholar
  425. Pancino E, Galfo A, Ferraro FR, Bellazzini M (2007) The rotation of subpopulations in \(\omega \) Centauri. Astrophys J Lett 661:L155–L158.  https://doi.org/10.1086/518959. arXiv:0704.2962 ADSCrossRefGoogle Scholar
  426. Pancino E, Rejkuba M, Zoccali M, Carrera R (2010) Low-resolution spectroscopy of main sequence stars belonging to 12 Galactic globular clusters. I. CH and CN band strength variations. Astron Astrophys 524:A44.  https://doi.org/10.1051/0004-6361/201014383. arXiv:1009.1589 ADSCrossRefGoogle Scholar
  427. Pancino E, Romano D, Tang B, Tautvaisiene G, Casey AR, Gruyters P, Geisler D, San Roman I, Randich S, Alfaro EJ, Bragaglia A, Flaccomio E, Korn AJ, Recio-Blanco A, Smiljanic R, Carraro G, Bayo A, Costado MT, Damiani F, Jofré P, Lardo C, de Laverny P, Monaco L, Morbidelli L, Sbordone L, Sousa SG, Villanova S (2017) The Gaia-ESO Survey. Mg–Al anti-correlation in iDR4 globular clusters. Astron Astrophys 601:A112.  https://doi.org/10.1051/0004-6361/201730474. arXiv:1702.06083 CrossRefGoogle Scholar
  428. Pasquini L, Bonifacio P, Molaro P, Francois P, Spite F, Gratton RG, Carretta E, Wolff B (2005) Li in NGC 6752 and the formation of globular clusters. Astron Astrophys 441:549–553.  https://doi.org/10.1051/0004-6361:20053607. arXiv:astro-ph/0506651 ADSCrossRefGoogle Scholar
  429. Pasquini L, Mauas P, Käufl HU, Cacciari C (2011) Measuring helium abundance difference in giants of NGC 2808. Astron Astrophys 531:A35.  https://doi.org/10.1051/0004-6361/201116592. arXiv:1105.0346 ADSCrossRefGoogle Scholar
  430. Pastorelli G, Marigo P, Girardi L, Chen Y, Rubele S, Trabucchi M, Aringer B, Bladh S, Bressan A, Montalbán J, Boyer ML, Dalcanton JJ, Eriksson K, Groenewegen MAT, Höfner S, Lebzelter T, Nanni A, Rosenfield P, Wood PR, Cioni MRL (2019) Constraining the thermally-pulsing asymptotic giant branch phase with resolved stellar populations in the Small Magellanic Cloud, arXiv e-prints. arXiv:1903.04499
  431. Peña Suárez VJ, Sales Silva JV, Katime Santrich OJ, Drake NA, Pereira CB (2018) High-resolution spectroscopic observations of single red giants in three open clusters: NGC 2360, NGC 3680, and NGC 5822. Astrophys J 854:184.  https://doi.org/10.3847/1538-4357/aaa017 ADSCrossRefGoogle Scholar
  432. Piatti AE, Carballo-Bello JA (2019) Extra-tidal structures around the Gaia Sausage candidate globular cluster NGC 6779 (M56). Mon Not R Astron Soc 485:1029–1035.  https://doi.org/10.1093/mnras/stz500. arXiv:1902.05824 ADSCrossRefGoogle Scholar
  433. Piatti AE, Mackey AD (2018) Evidence of differential tidal effects in the old globular cluster population of the Large Magellanic Cloud. Mon Not R Astron Soc 478:2164–2176.  https://doi.org/10.1093/mnras/sty1048. arXiv:1804.09549 ADSCrossRefGoogle Scholar
  434. Pietrinferni A, Cassisi S, Salaris M, Castelli F (2004) A large stellar evolution database for population synthesis studies. I. Scaled solar models and isochrones. Astrophys J 612(1):168–190.  https://doi.org/10.1086/422498. arXiv:astro-ph/0405193 ADSCrossRefGoogle Scholar
  435. Pietrinferni A, Cassisi S, Salaris M, Castelli F (2006) A large stellar evolution database for population synthesis studies. II. Stellar models and isochrones for an \(\alpha \)-enhanced metal distribution. Astrophys J 642(2):797–812.  https://doi.org/10.1086/501344. arXiv:astro-ph/0603721 ADSCrossRefGoogle Scholar
  436. Pignatari M, Gallino R, Heil M, Wiescher M, Käppeler F, Herwig F, Bisterzo S (2010) The weak s-process in massive stars and its dependence on the neutron capture cross sections. Astrophys J 710:1557–1577.  https://doi.org/10.1088/0004-637X/710/2/1557 ADSCrossRefGoogle Scholar
  437. Piotto G (2010) Observational evidence of multiple stellar populations in star clusters. Publ Korean Astron Soc 25:91–99.  https://doi.org/10.5303/PKAS.2010.25.3.091. arXiv:0902.1422 ADSCrossRefGoogle Scholar
  438. Piotto G, De Angeli F, King IR, Djorgovski SG, Bono G, Cassisi S, Meylan G, Recio-Blanco A, Rich RM, Davies MB (2004) Relative frequencies of blue stragglers in galactic globular clusters: constraints for the formation mechanisms. Astrophys J Lett 604:L109–L112.  https://doi.org/10.1086/383617. arXiv:astro-ph/0402592 ADSCrossRefGoogle Scholar
  439. Piotto G, Villanova S, Bedin LR, Gratton R, Cassisi S, Momany Y, Recio-Blanco A, Lucatello S, Anderson J, King IR, Pietrinferni A, Carraro G (2005) Metallicities on the double main sequence of \(\omega \) Centauri imply large helium enhancement. Astrophys J 621:777–784.  https://doi.org/10.1086/427796. arXiv:astro-ph/0412016 ADSCrossRefGoogle Scholar
  440. Piotto G, Bedin LR, Anderson J, King IR, Cassisi S, Milone AP, Villanova S, Pietrinferni A, Renzini A (2007) A triple main sequence in the globular cluster NGC 2808. Astrophys J Lett 661:L53–L56.  https://doi.org/10.1086/518503. arXiv:astro-ph/0703767 ADSCrossRefGoogle Scholar
  441. Piotto G, Milone AP, Bedin LR, Anderson J, King IR, Marino AF, Nardiello D, Aparicio A, Barbuy B, Bellini A, Brown TM, Cassisi S, Cool AM, Cunial A, Dalessandro E, D’Antona F, Ferraro FR, Hidalgo S, Lanzoni B, Monelli M, Ortolani S, Renzini A, Salaris M, Sarajedini A, van der Marel RP, Vesperini E, Zoccali M (2015) The Hubble Space Telescope UV legacy survey of galactic globular clusters. I. Overview of the project and detection of multiple stellar populations. Astron J 149:91.  https://doi.org/10.1088/0004-6256/149/3/91. arXiv:1410.4564 ADSCrossRefGoogle Scholar
  442. Piskunov AE, Schilbach E, Kharchenko NV, Röser S, Scholz RD (2008) Tidal radii and masses of open clusters. Astron Astrophys 477:165–172.  https://doi.org/10.1051/0004-6361:20078525 ADSCrossRefGoogle Scholar
  443. Platais I, Cudworth KM, Kozhurina-Platais V, McLaughlin DE, Meibom S, Veillet C (2011) A new look at the old star cluster NGC 6791. Astrophys J Lett 733:L1.  https://doi.org/10.1088/2041-8205/733/1/L1. arXiv:1104.5473 ADSCrossRefGoogle Scholar
  444. Plummer HC (1911) On the problem of distribution in globular star clusters. Mon Not R Astron Soc 71:460–470.  https://doi.org/10.1093/mnras/71.5.460 ADSCrossRefGoogle Scholar
  445. Portegies Zwart SF, McMillan SLW, Gieles M (2010) Annu Rev Astron Astrophys 48:431–493.  https://doi.org/10.1146/annurev-astro-081309-130834. arXiv:1002.1961 ADSCrossRefGoogle Scholar
  446. Prantzos N, Charbonnel C (2006) On the self-enrichment scenario of galactic globular clusters: constraints on the IMF. Astron Astrophys 458:135–149.  https://doi.org/10.1051/0004-6361:20065374. arXiv:astro-ph/0606112 ADSCrossRefGoogle Scholar
  447. Prantzos N, Hashimoto M, Nomoto K (1990) The s-process in massive stars—yields as a function of stellar mass and metallicity. Astron Astrophys 234:211–229ADSGoogle Scholar
  448. Prantzos N, Charbonnel C, Iliadis C (2007) Light nuclei in galactic globular clusters: constraints on the self-enrichment scenario from nucleosynthesis. Astron Astrophys 470:179–190.  https://doi.org/10.1051/0004-6361:20077205. arXiv:0704.3331 ADSCrossRefGoogle Scholar
  449. Prantzos N, Charbonnel C, Iliadis C (2017) Revisiting nucleosynthesis in globular clusters. The case of NGC 2808 and the role of He and K. Astron Astrophys 608:A28.  https://doi.org/10.1051/0004-6361/201731528. arXiv:1709.05819 ADSCrossRefGoogle Scholar
  450. Prieto JL, Gnedin OY (2008) Dynamical evolution of globular clusters in hierarchical cosmology. Astrophys J 689(2):919–935.  https://doi.org/10.1086/591777. arXiv:astro-ph/0608069 ADSCrossRefGoogle Scholar
  451. Qian YZ, Woosley SE (1996) Nucleosynthesis in neutrino-driven winds. I. The physical conditions. Astrophys J 471:331.  https://doi.org/10.1086/177973. arXiv:astro-ph/9611094 ADSCrossRefGoogle Scholar
  452. Raghavan D, McAlister HA, Henry TJ, Latham DW, Marcy GW, Mason BD, Gies DR, White RJ, ten Brummelaar TA (2010) A survey of stellar families: multiplicity of solar-type stars. Astrophys J Suppl 190:1–42.  https://doi.org/10.1088/0067-0049/190/1/1. arXiv:1007.0414 ADSCrossRefGoogle Scholar
  453. Raiteri CM, Busso M, Gallino R, Picchio G, Pulone L (1991) S-process nucleosynthesis in massive stars and the weak component. I. Evolution and neutron captures in a 25 \(M_{\odot }\) star. Astrophys J 367:228–238.  https://doi.org/10.1086/169622 ADSCrossRefGoogle Scholar
  454. Ramírez I, Meléndez J, Chanamé J (2012) Oxygen abundances in low- and high-\(\alpha \) field halo stars and the discovery of two field stars born in globular clusters. Astrophys J 757:164.  https://doi.org/10.1088/0004-637X/757/2/164. arXiv:1208.3675 ADSCrossRefGoogle Scholar
  455. Read JI, Wilkinson MI, Evans NW, Gilmore G, Kleyna JT (2006) The tidal stripping of satellites. Mon Not R Astron Soc 366:429–437.  https://doi.org/10.1111/j.1365-2966.2005.09861.x. arXiv:astro-ph/0506687 ADSCrossRefGoogle Scholar
  456. Reina-Campos M, Kruijssen JMD, Pfeffer J, Bastian N, Crain RA (2018) Dynamical cluster disruption and its implications for multiple population models in the E-MOSAICS simulations. Mon Not R Astron Soc 481(3):2851–2857.  https://doi.org/10.1093/mnras/sty2451. arXiv:1809.03499 ADSCrossRefGoogle Scholar
  457. Renzini A (2008) Origin of multiple stellar populations in globular clusters and their helium enrichment. Mon Not R Astron Soc 391:354–362.  https://doi.org/10.1111/j.1365-2966.2008.13892.x. arXiv:0808.4095 ADSCrossRefGoogle Scholar
  458. Renzini A (2017) Finding forming globular clusters at high redshifts. Mon Not R Astron Soc 469:L63–L67.  https://doi.org/10.1093/mnrasl/slx057. arXiv:1704.04883 ADSCrossRefGoogle Scholar
  459. Renzini A, D’Antona F, Cassisi S, King IR, Milone AP, Ventura P, Anderson J, Bedin LR, Bellini A, Brown TM, Piotto G, van der Marel RP, Barbuy B, Dalessandro E, Hidalgo S, Marino AF, Ortolani S, Salaris M, Sarajedini A (2015) The Hubble Space Telescope UV legacy survey of galactic globular clusters—V. Constraints on formation scenarios. Mon Not R Astron Soc 454:4197–4207.  https://doi.org/10.1093/mnras/stv2268. arXiv:1510.01468 ADSCrossRefGoogle Scholar
  460. Richer HB, Heyl J, Anderson J, Kalirai JS, Shara MM, Dotter A, Fahlman GG, Rich RM (2013) A dynamical signature of multiple stellar populations in 47 Tucanae. Astrophys J Lett 771:L15.  https://doi.org/10.1088/2041-8205/771/1/L15. arXiv:1306.1226 ADSCrossRefGoogle Scholar
  461. Roederer IU, Mateo M, Bailey JI, Spencer M, Crane JD, Shectman SA (2016) Detailed chemical abundances in NGC 5824: another metal-poor globular cluster with internal heavy element abundance variations. Mon Not R Astron Soc 455:2417–2439.  https://doi.org/10.1093/mnras/stv2462. arXiv:1510.06414 ADSCrossRefGoogle Scholar
  462. Rubenstein EP, Bailyn CD (1997) Hubble Space Telescope observations of the post-core-collapse globular cluster NGC 6752. II. A large main-sequence binary population. Astrophys J 474:701–709.  https://doi.org/10.1086/303498 ADSCrossRefGoogle Scholar
  463. Rutledge GA, Hesser JE, Stetson PB (1997) Galactic globular cluster metallicity scale from the Ca II triplet II. Rankings, comparisons, and puzzles. Publ Astron Soc Pac 109:907–919.  https://doi.org/10.1086/133959. arXiv:astro-ph/9707068 ADSCrossRefGoogle Scholar
  464. Ryu J, Lee MG (2018) Discovery of two new globular clusters in the Milky Way. Astrophys J Lett 863:L38.  https://doi.org/10.3847/2041-8213/aad8b7. arXiv:1808.03455 ADSCrossRefGoogle Scholar
  465. Sakari CM, Venn KA, Irwin M, Aoki W, Arimoto N, Dotter A (2011) Detailed chemical abundances of four stars in the unusual globular cluster palomar 1. Astrophys J 740:106.  https://doi.org/10.1088/0004-637X/740/2/106. arXiv:1107.5315 ADSCrossRefGoogle Scholar
  466. Salaris M, Cassisi S, Weiss A (2002) Red giant branch stars: the theoretical framework. Publ Astron Soc Pac 114(794):375–402.  https://doi.org/10.1086/342498. arXiv:astro-ph/0201387 ADSCrossRefGoogle Scholar
  467. Salaris M, Weiss A, Ferguson JW, Fusilier DJ (2006) On the primordial scenario for abundance variations within globular clusters: the isochrone test. Astrophys J 645:1131–1137.  https://doi.org/10.1086/504520. arXiv:astro-ph/0604137 ADSCrossRefGoogle Scholar
  468. Salaris M, Cassisi S, Pietrinferni A (2016) On the red giant branch mass loss in 47 Tucanae: constraints from the horizontal branch morphology. Astron Astrophys 590:A64.  https://doi.org/10.1051/0004-6361/201628181. arXiv:1604.02874 ADSCrossRefGoogle Scholar
  469. Salinas R, Strader J (2015) No evidence for multiple stellar populations in the low-mass galactic globular cluster E 3. Astrophys J 809:169.  https://doi.org/10.1088/0004-637X/809/2/169. arXiv:1506.00637 ADSCrossRefGoogle Scholar
  470. San Roman I, Muñoz C, Geisler D, Villanova S, Kacharov N, Koch A, Carraro G, Tautvaisiene G, Vallenari A, Alfaro EJ, Bensby T, Flaccomio E, Francois P, Korn AJ, Pancino E, Recio-Blanco A, Smiljanic R, Bergemann M, Costado MT, Damiani F, Heiter U, Hourihane A, Jofré P, Lardo C, de Laverny P, Masseron T, Morbidelli L, Sbordone L, Sousa SG, Worley CC, Zaggia S (2015) The Gaia-ESO Survey: detailed abundances in the metal-poor globular cluster NGC 4372. Astron Astrophys 579:A6.  https://doi.org/10.1051/0004-6361/201525722. arXiv:1504.03497 CrossRefGoogle Scholar
  471. Sandage AR (1953) The color-magnitude diagram for the globular cluster M 3. Astron J 58:61–75.  https://doi.org/10.1086/106822 ADSCrossRefGoogle Scholar
  472. Santrich OJK, Pereira CB, Drake NA (2013) Chemical analysis of giant stars in the young open cluster NGC 3114. Astron Astrophys 554:A2.  https://doi.org/10.1051/0004-6361/201220252. arXiv:1304.1004 ADSCrossRefGoogle Scholar
  473. Sarajedini A, Bedin LR, Chaboyer B, Dotter A, Siegel M, Anderson J, Aparicio A, King I, Majewski S, Marín-Franch A, Piotto G, Reid IN, Rosenberg A (2007) The ACS survey of galactic globular clusters. I. Overview and clusters without previous Hubble Space Telescope photometry. Astron J 133:1658–1672.  https://doi.org/10.1086/511979. arXiv:astro-ph/0612598 ADSCrossRefGoogle Scholar
  474. Sarna MJ, De Greve JP (1996) Chemical evolution of algols. Q J R Astron Soc 37:11ADSGoogle Scholar
  475. Savino A, Massari D, Bragaglia A, Dalessandro E, Tolstoy E (2018) M13 multiple stellar populations seen with the eyes of Strömgren photometry. Mon Not R Astron Soc 474:4438–4446.  https://doi.org/10.1093/mnras/stx3093. arXiv:1712.01284 ADSCrossRefGoogle Scholar
  476. Sbordone L, Bonifacio P, Marconi G, Buonanno R, Zaggia S (2005) Family ties: abundances in Terzan 7, a Sgr dSph globular cluster. Astron Astrophys 437:905–910.  https://doi.org/10.1051/0004-6361:20042315. arXiv:astro-ph/0505307 ADSCrossRefGoogle Scholar
  477. Sbordone L, Bonifacio P, Buonanno R, Marconi G, Monaco L, Zaggia S (2007) The exotic chemical composition of the Sagittarius dwarf spheroidal galaxy. Astron Astrophys 465:815–824.  https://doi.org/10.1051/0004-6361:20066385. arXiv:astro-ph/0612125 ADSCrossRefGoogle Scholar
  478. Sbordone L, Bonifacio P, Caffau E, Ludwig HG, Behara NT, González Hernández JI, Steffen M, Cayrel R, Freytag B, van’t Veer C, Molaro P, Plez B, Sivarani T, Spite M, Spite F, Beers TC, Christlieb N, François P, Hill V, (2010) The metal-poor end of the Spite plateau. I. Stellar parameters, metallicities, and lithium abundances. Astron Astrophys 522:A26.  https://doi.org/10.1051/0004-6361/200913282. arXiv:1003.4510 CrossRefGoogle Scholar
  479. Schaerer D, Charbonnel C (2011) A new perspective on globular clusters, their initial mass function and their contribution to the stellar halo and the cosmic reionization. Mon Not R Astron Soc 413:2297–2304.  https://doi.org/10.1111/j.1365-2966.2011.18304.x. arXiv:1101.1073 ADSCrossRef