Advertisement

The distribution of dark matter in galaxies

  • Paolo SalucciEmail author
Review Article
  • 69 Downloads

Abstract

The distribution of the non-luminous matter in galaxies of different luminosity and Hubble type is much more than a proof of the existence of dark particles governing the structures of the Universe. Here, we will review the complex but well-ordered scenario of the properties of the dark halos also in relation with those of the baryonic components they host. Moreover, we will present a number of tight and unexpected correlations between selected properties of the dark and the luminous matter. Such entanglement evolves across the varying properties of the luminous component and it seems to unequivocally lead to a dark particle able to interact with the Standard Model particles over cosmological times. This review will also focus on whether we need a paradigm shift, from pure collisionless dark particles emerging from “first principles”, to particles that we can discover only by looking to how they have designed the structure of the galaxies.

Keywords

Dark matter Galaxies Cosmology Elementary particles 

Notes

Acknowledgements

I thank Francesca Matteucci for motivating me towards the enterprise of writing this review. I thank N. Turini, V. Gammaldi, F. Nesti, M. Cobal, A. Bressan, M. Cappellari, G. Danese, A. Lapi, C. Frenk, C. Baccigalupi, A. Pillepich, M. F. de Laurentis, R. Valdarnini and C. di Paolo for very useful discussions. I thank Brigitte Greinoecker for help in the process of writing this review.

References

  1. Adams JJ, Simon JD, Fabricius MH et al (2014) Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics. ApJ 789:63ADSCrossRefGoogle Scholar
  2. Adhikari R, Agostini M, Ky NA et al (2017) A white paper on keV sterile neutrino dark matter. JCAP 1:025ADSCrossRefGoogle Scholar
  3. Alabi AB, Forbes DA, Romanowsky AJ et al (2016) The SLUGGS survey: the mass distribution in early-type galaxies within five effective radii and beyond. MNRAS 460:3838ADSCrossRefGoogle Scholar
  4. Alabi A, Ferré-Mateu A, Romanowsky AJ, Brodie J, Forbes DA, Wasserman A, Bellstedt S, Martín-Navarro I, Pandya V, Stone M, Okabe N (2018) Origins of ultradiffuse galaxies in the Coma cluster—I. Constraints from velocity phase space. Mon Not R Astron Soc 479(3):3308–3318.  https://doi.org/10.1093/mnras/sty1616 ADSCrossRefGoogle Scholar
  5. An JH, Evans NW (2011) Modified virial formulae and the theory of mass estimators. MNRAS 413:1744ADSCrossRefGoogle Scholar
  6. Aprile E, Aalbers J, Agostini F (2018) Dark matter search results from a one ton-year exposure of XENON1T (XENON Collaboration). PRL 121:111302ADSCrossRefGoogle Scholar
  7. Arcadi G, Dutra M, Ghosh P (2018) The waning of the WIMP? A review of models, searches, and constraints. EPJC 78:203ADSCrossRefGoogle Scholar
  8. Auger MW et al (2010) The Sloan Lens ACS Survey. X. Stellar, dynamical, and total mass correlations of massive early-type galaxies. ApJ 724:511ADSCrossRefGoogle Scholar
  9. Bacon R, Copin Y, Monnet G (2001) The SAURON project—I. The panoramic integral-field spectrograph. MNRAS 326:23ADSCrossRefGoogle Scholar
  10. Bahcall JN (1984) K giants and the total amount of matter near the sun. ApJ 276:169ADSCrossRefGoogle Scholar
  11. Bartelmann M, Maturi M (2016) Weak gravitational lensing. ArXiv e-print. arXiv:1612.06535
  12. Battaglia G, Helmi A, Breddels M (2013) Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way. New Astron Rev 57:52ADSCrossRefGoogle Scholar
  13. Beasley MA, Romanowsky AJ, Pota V et al (2016) An overmassive dark halo around an ultra-diffuse galaxy in the Virgo cluster. ApJL 819:L20ADSCrossRefGoogle Scholar
  14. Bell E, de Jong RS (2001) Stellar mass-to-light ratios and the Tully–Fisher relation. ApJ 550:212ADSCrossRefGoogle Scholar
  15. Bell EF, McIntosh DH, Katz N, Weinberg MD (2003) The optical and near-infrared properties of galaxies. I. Luminosity and stellar mass functions. ApJS 149:289ADSCrossRefGoogle Scholar
  16. Bellazzini B, Cliche M, Tanedo P (2013) Effective theory of self-interacting dark matter. PRD 88:083506ADSCrossRefGoogle Scholar
  17. Bernal N, Heikinheimo Tenkanen NT (2017) The dawn of FIMP dark matter: a review of models and constraints. IJMPA 32:27CrossRefGoogle Scholar
  18. Bernardi M, Sheth RK, Annis J (2003) Early-type galaxies in the Sloan Digital Sky Survey. II. Correlations between observables. AJ 125:1866ADSCrossRefGoogle Scholar
  19. Bershady MA, Verheijen MAW, Westfall KB (2010a) The DiskMass Survey. I. Overview. ApJ 716:234ADSCrossRefGoogle Scholar
  20. Bershady MA, Verheijen MAW, Swaters RA (2010b) The DiskMass Survey. II. Error budget. ApJ 716:198ADSCrossRefGoogle Scholar
  21. Bertone G (ed) (2010) Particle dark matter: observations, models and searches. Cambridge University Press, CambridgezbMATHGoogle Scholar
  22. Bertone G, Hooper D (2018) History of dark matter. Rev Mod Phys 90(4):045002.  https://doi.org/10.1103/RevModPhys.90.045002 ADSCrossRefGoogle Scholar
  23. Binney J, Tremaine S (2008) Galactic dynamics. Princeton University Press, PrincetonzbMATHGoogle Scholar
  24. Bloom JV (2017) The SAMI Galaxy Survey: the low-redshift stellar mass Tully–Fisher relation. MNRAS 472:1809ADSCrossRefGoogle Scholar
  25. Boddy KK, Feng JL, Manoj Kaplinghat M et al (2014) Strongly interacting dark matter: self-interactions and keV lines. PRD 89:115017ADSCrossRefGoogle Scholar
  26. Bode P, Ostriker JP, Turok N (2001) Halo formation in warm dark matter models. ApJ 556:93ADSCrossRefGoogle Scholar
  27. Bolton AS, Burles S, Koopmans LVE et al (2006) The Sloan Lens ACS Survey. I. A large spectroscopically selected sample of massive early-type lens galaxies. ApJ 638:703ADSCrossRefGoogle Scholar
  28. Bolton AS, Burles S, Treu T (2007) A more fundamental plane. ApJ 665:105ADSCrossRefGoogle Scholar
  29. Bolton AS et al (2008) The Sloan Lens ACS Survey. VII. Elliptical galaxy scaling laws from direct observational mass measurements. ApJ 684:248ADSCrossRefGoogle Scholar
  30. Bonnivard V et al (2015) Dark matter annihilation and decay in dwarf spheroidal galaxies: the classical and ultrafaint dSphs. MNRAS 453:849ADSCrossRefGoogle Scholar
  31. Bosma A (1981a) 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. AJ 86:1791ADSCrossRefGoogle Scholar
  32. Bosma A (1981b) 21-cm line studies of spiral galaxies. I—observations of the galaxies NGC 5033, 3198, 5055, 2841, and 7331. AJ 86:1825ADSCrossRefGoogle Scholar
  33. Bothun GD, Impey CD, Malin DF (1991) Extremely low surface brightness galaxies in the Fornax Cluster—properties, stability, and luminosity fluctuations. ApJ 376:404ADSCrossRefGoogle Scholar
  34. Bottema R, Pestaña JLG (2015) The distribution of dark and luminous matter inferred from extended rotation curves. MNRAS 448:2566ADSCrossRefGoogle Scholar
  35. Boyarsky A, Nevalainen J, Ruchayskiy O (2007) Constraints on the parameters of radiatively decaying dark matter from the dark matter halos of the Milky Way and Ursa Minor. A&A 471:51ADSCrossRefGoogle Scholar
  36. Breddels MA, Helmi A, van den Bosch RCE et al (2013) Orbit-based dynamical models of the Sculptor dSph galaxy. MNRAS 433:3173ADSCrossRefGoogle Scholar
  37. Bringmann T et al (2016) Suppressing structure formation at dwarf galaxy scales and below: late kinetic decoupling as a compelling alternative to warm dark matter. PRD 94:103529ADSCrossRefGoogle Scholar
  38. Brook CB, Santos-Santos I, Stinson G (2016) The different baryonic Tully–Fisher relations at low masses. MNRAS 459:638ADSCrossRefGoogle Scholar
  39. Brown WR, Geller MJ, Kenyon SJ, Diaferio A (2009) The anisotropic spatial distribution of hypervelocity stars. ApJ 690:1639ADSCrossRefGoogle Scholar
  40. Bruzual G, Charlot S (2003) Stellar population synthesis at the resolution of 2003. MNRAS 344:1000ADSCrossRefGoogle Scholar
  41. Bullock JS, Boylan-Kolchin M (2017) Small-scale challenges to the \(\varLambda \)CDM paradigm. ARAA 55:343ADSCrossRefGoogle Scholar
  42. Burkert A (1995) The structure of dark matter halos in dwarf galaxies. ApJL 447:L25ADSCrossRefGoogle Scholar
  43. Burkert A (2015) The structure and dark halo core properties of dwarf spheroidal galaxies. ApJ 808:158ADSCrossRefGoogle Scholar
  44. Butler J (2018) Dark matter searches at the LHC. PoS(ALPS2018), 030Google Scholar
  45. Caldwell JAR, Ostriker JP (1981) The mass distribution within our Galaxy—a three component model. ApJ 251:61ADSCrossRefGoogle Scholar
  46. Campbell DJR et al (2017) Knowing the unknowns: uncertainties in simple estimators of galactic dynamical masses. MNRAS 469:2335ADSCrossRefGoogle Scholar
  47. Cappellari M (2016) Structure and kinematics of early-type galaxies from integral field spectroscopy. ARAA 54:597ADSCrossRefGoogle Scholar
  48. Cappellari M, Emsellem E, Krajnović D et al (2011) The ATLAS\(^{3D}\) project—VII. A new look at the morphology of nearby galaxies: the kinematic morphology-density relation. MNRAS 413:813ADSCrossRefGoogle Scholar
  49. Cappellari M et al (2012) Systematic variation of the stellar initial mass function in early-type galaxies. Nature 484:485ADSCrossRefGoogle Scholar
  50. Cappellari M et al (2013) The ATLAS\(^{3D}\) project—XX. Mass-size and mass-\(\sigma \) distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function. MNRAS 432:1709ADSCrossRefGoogle Scholar
  51. Cappellari M, Romanowsky AJ, Brodie JP et al (2015) Small scatter and nearly isothermal mass profiles to four half-light radii from two-dimensional stellar dynamics of early-type galaxies. ApJL 804:L21ADSCrossRefGoogle Scholar
  52. Cappellari M et al (2006) The SAURON project—IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies. MNRAS 366:1126ADSCrossRefGoogle Scholar
  53. Carignan C, Freeman KC (1985) Basic parameters of dark halos in late-type spirals. ApJ 294:494ADSCrossRefGoogle Scholar
  54. Catena R, Ullio P (2010) A novel determination of the local dark matter density. JCAP 08(2010):004ADSCrossRefGoogle Scholar
  55. Catena R, Ullio P (2012) The local dark matter phase-space density and impact on WIMP direct detection. JCAP 05(2012):005ADSCrossRefGoogle Scholar
  56. Catinella B, Giovanelli R, Haynes MP (2006) Template rotation curves for disk galaxies. ApJ 640:751ADSCrossRefGoogle Scholar
  57. Chae K-H (2014) A universal power-law profile of pseudo-phase-space density-like quantities in elliptical galaxies. ApJL 788:L15ADSCrossRefGoogle Scholar
  58. Coccato L, Gerhard O, Arnaboldi M et al (2009) Kinematic properties of early-type galaxy haloes using planetary nebulae. MNRAS 394:1249ADSCrossRefGoogle Scholar
  59. Corbelli E, Salucci P (2000) The extended rotation curve and the dark matter halo of M33. MNRAS 311:441ADSCrossRefGoogle Scholar
  60. Corsini EM, Wegner GA, Thomas J et al (2017) The density of dark matter haloes of early-type galaxies in low-density environments. MNRAS 466:974ADSCrossRefGoogle Scholar
  61. Courteau S (1997) Optical rotation curves and linewidths for Tully–Fisher applications. AJ 114:2402ADSCrossRefGoogle Scholar
  62. Cretton N, de Zeeuw PT, van der Marel RP, Rix H-W (1999) Axisymmetric three-integral models for galaxies. ApJS 124:383ADSCrossRefGoogle Scholar
  63. Deason AJ, Belokurov V, Evans NW, An J (2012) Broken degeneracies: the rotation curve and velocity anisotropy of the Milky Way halo. MNRAS 424:L44ADSCrossRefGoogle Scholar
  64. de Blok WJG (2010) The core–cusp problem. Adv Astron 2010:789293ADSGoogle Scholar
  65. de Blok WJG, McGaugh SS, Rubin VC (2001) High-resolution rotation curves of low surface brightness galaxies. II. Mass models. AJ 122:2396ADSCrossRefGoogle Scholar
  66. de Blok WJG, Walter F, Brinks E (2008) High-resolution rotation curves and galaxy mass models from THINGS. AJ 136:2648ADSCrossRefGoogle Scholar
  67. De Masi C, Matteucci F, Vincenzo F (2018) The effects of the initial mass function on the chemical evolution of elliptical galaxies. MNRAS 474:5259ADSCrossRefGoogle Scholar
  68. Destri C, de Vega P, Sanchez NG (2013) Warm dark matter primordial spectra and the onset of structure formation at redshift z. PRD 88:3512CrossRefGoogle Scholar
  69. de Swart J, Bertone G, van Dongen J (2017) How dark matter came to matter. Nat Astron 1:005CrossRefGoogle Scholar
  70. de Vega HJ, Sanchez NG (2017) Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies. EPJC 77:1CrossRefGoogle Scholar
  71. de Zeeuw PT, Bureau M, Emsellem E (2002) The SAURON project—II. Sample and early results. MNRAS 329:513ADSCrossRefGoogle Scholar
  72. Di Cintio A, Brook CB, Dutton AA et al (2014) A mass-dependent density profile for dark matter haloes including the influence of galaxy formation. MNRAS 441:2986ADSCrossRefGoogle Scholar
  73. Di Paolo C, Salucci P (2018) The universal rotation curve of low surface brightness galaxies IV: the interrelation between dark and luminous matter. ArXiv e-print. arXiv:1805.07165
  74. Di Paolo C, Nesti F, Villante FL (2018) Phase-space mass bound for fermionic dark matter from dwarf spheroidal galaxies. MNRAS 475:5385ADSCrossRefGoogle Scholar
  75. Djorgovski S, Davis M (1987) Fundamental properties of elliptical galaxies. ApJ 313:59ADSCrossRefGoogle Scholar
  76. Dodelson S, Widrow LM (1994) Sterile neutrinos as dark matter. PRL 72:17ADSCrossRefGoogle Scholar
  77. Donato F, Gentile G, Salucci P (2004) Cores of dark matter haloes correlate with stellar scalelengths. MNRAS 353:17ADSCrossRefGoogle Scholar
  78. Donato F, Gentile G, Salucci P et al (2009) A constant dark matter halo surface density in galaxies. MNRAS 397:1169ADSCrossRefGoogle Scholar
  79. Dressler A, Lynden-Bell D, Burstein D et al (1987) Spectroscopy and photometry of elliptical galaxies. I—a new distance estimator. ApJ 313:42ADSCrossRefGoogle Scholar
  80. Ellis G et al (2018) The standard cosmological model: achievements and issues. Found Phys 48:1226ADSMathSciNetCrossRefGoogle Scholar
  81. Ettori S, Fabian AC (2006) Effects of sedimented helium on the X-ray properties of galaxy clusters. MNRAS 369:L42ADSCrossRefGoogle Scholar
  82. Evoli C, Salucci P, Lapi A, Danese L (2011) The HI content of local late-type galaxies. ApJ 743:45ADSCrossRefGoogle Scholar
  83. Faber SM, Gallagher JS (1979) Masses and mass-to-light ratios of galaxies. ARAA 17:135ADSCrossRefGoogle Scholar
  84. Fabricant D, Rybicki G, Gorenstein P (1984) Further evidence for M87’s massive, dark halo. ApJ 286:186ADSCrossRefGoogle Scholar
  85. Freeman KC (1970) On the disks of spiral and so galaxies. ApJ 160:811ADSCrossRefGoogle Scholar
  86. Freese K (2017) Status of dark matter in the universe. IJMPD 26:1730012ADSCrossRefGoogle Scholar
  87. Gammaldi V (2015) Indirect searchers of TeV dark matter. PhD thesis, UCM MadridGoogle Scholar
  88. Gammaldi V (2016) Highlights on gamma rays, neutrinos and antiprotons from TeV dark matter. EPJ Web Conf 121:06003CrossRefGoogle Scholar
  89. García-Bellido J (2017) Massive primordial black holes as dark matter and their detection with gravitational waves. J Phys Conf Ser 840:012032CrossRefGoogle Scholar
  90. Gentile G, Salucci P, Klein U, Vergani D, Kalberla P (2004) The cored distribution of dark matter in spiral galaxies. MNRAS 351:903ADSCrossRefGoogle Scholar
  91. Gentile G, Burkert A, Salucci P et al (2005) The dwarf galaxy DDO 47 as a dark matter laboratory: testing cusps hiding in triaxial halos. ApJ 634:145ADSCrossRefGoogle Scholar
  92. Genzel R, Schreiber NMF, Übler H et al (2017) Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature 543:397ADSCrossRefGoogle Scholar
  93. Gondolo P (2002) Recoil momentum spectrum in directional dark matter detectors. PRD 66:103513ADSCrossRefGoogle Scholar
  94. Gratier P, Braine J, Rodriguez-Fernandez NJ et al (2010) Molecular and atomic gas in the Local Group galaxy M 33. A&A 522:A3ADSCrossRefGoogle Scholar
  95. Graves GJ, Faber SM (2010) Dissecting the red sequence. III. Mass-to-light variations in three-dimensional fundamental plane space. ApJ 717:803ADSCrossRefGoogle Scholar
  96. Green AM (2016) Microlensing and dynamical constraints on primordial black hole dark matter with an extended mass function. PRD 94:063530ADSCrossRefGoogle Scholar
  97. Grillo C, Gobat R, Lombardi M, Rosati P (2009) Photometric mass and mass decomposition in early-type lens galaxies. A&A 501:461ADSCrossRefGoogle Scholar
  98. Gurovich S, McGaugh SS, Freeman KC (2004) The baryonic Tully–Fisher relation. PASA 21:412ADSCrossRefGoogle Scholar
  99. Hammer F, Yang Y, Arenou F, Babusiaux C, Wang J, Puech M, Flores H (2018) Galactic forces rule the dynamics of milky way dwarf galaxies. Astrophys J 860(1):76. https://doi.org/10.3847/1538-4357/aac3da
  100. Hessman FV (2017) Estimating the baryonic masses of face-on spiral galaxies from stellar kinematics. MNRAS 469:1147ADSCrossRefGoogle Scholar
  101. Hoekstra H, Jain B (2008) Weak gravitational lensing and its cosmological applications. Annu Rev Nucl Part Sci 58:99ADSCrossRefGoogle Scholar
  102. Honma M, Nagayama T, Ando K et al (2012) Fundamental parameters of the Milky Way galaxy based on VLBI astrometry. PASJ 64:136ADSCrossRefGoogle Scholar
  103. Hudson MJ, Gillis BR, Coupon J et al (2015) CFHTLenS: co-evolution of galaxies and their dark matter haloes. MNRAS 447:298ADSCrossRefGoogle Scholar
  104. Hui L, Ostriker JP, Tremaine S, Witten E (2017) Ultralight scalars as cosmological dark matter. PRD 95:043541ADSCrossRefGoogle Scholar
  105. Hyde JB, Bernardi M (2009) The luminosity and stellar mass Fundamental Plane of early-type galaxies. MNRAS 396:1171ADSCrossRefGoogle Scholar
  106. Impey C, Bothun G, Malin D (1988) Virgo dwarfs—new light on faint galaxies. ApJ 330:634ADSCrossRefGoogle Scholar
  107. Jorgensen I, Franx M, Kjaergaard P (1996) The fundamental plane for cluster E and S0 galaxies. MNRAS 280:167ADSCrossRefGoogle Scholar
  108. Jungman G, Kamionkowski M, Griest K (1996) Supersymmetric dark matter. Phys Rep 267:195ADSCrossRefGoogle Scholar
  109. Jurić M, Ivezić Ž, Brooks A (2008) The Milky Way tomography with SDSS. I. Stellar number density distribution. ApJ 673:864ADSCrossRefGoogle Scholar
  110. Kang S, Scopel S, Tomar G, Yoon J-H (2018) Present and projected sensitivities of Dark Matter direct detection experiments to effective WIMP-nucleus couplings. ArXiv e-print. arXiv:1805.06113
  111. Kaplinghat M, Linden T, Yu H-B (2015) Galactic center excess in \(\gamma \) rays from annihilation of self-interacting dark matter. PRL 114:211303ADSCrossRefGoogle Scholar
  112. Karukes EV, Salucci P (2017) The universal rotation curve of dwarf disc galaxies. MNRAS 465:4703ADSCrossRefGoogle Scholar
  113. Karukes EV, Salucci P, Gentile G (2015) The dark matter distribution in the spiral NGC 3198 out to 0.22 R\(_{{\rm vir}}\). A&A 578:A13ADSCrossRefGoogle Scholar
  114. Kennedy R, Frenk C, Cole S, Benson A (2014) Constraining the warm dark matter particle mass with Milky Way satellites. MNRAS 442:2487ADSCrossRefGoogle Scholar
  115. Klypin A, Trujillo-Gomez S, Primack J (2011) Dark matter halos in the standard cosmological model: results from the Bolshoi simulation. ApJ 740:102ADSCrossRefGoogle Scholar
  116. Kolb EW, Turner MS (1990) The early universe. Addison Wesley, New YorkzbMATHGoogle Scholar
  117. Kormendy J, Freeman KC (2004) Scaling laws for dark matter halos in late-type and dwarf spheroidal galaxies. In: Ryder SD et al (eds) Dark matter in galaxies (IAU S220). ASP, San Francisco, p 377Google Scholar
  118. Korsaga M, Carignan C, Amram P et al (2018) GHASP: an H\(\alpha \) kinematical survey of spiral galaxies—XI. Distribution of luminous and dark matter in spiral and irregular nearby galaxies using WISE photometry. MNRAS 478:50ADSCrossRefGoogle Scholar
  119. Koushiappas SM, Loeb A (2017) Dynamics of dwarf galaxies disfavor stellar-mass black holes as dark matter. PRL 119:041102ADSCrossRefGoogle Scholar
  120. Kregel M, van der Kruit PC, de Grijs R (2002) Flattening and truncation of stellar discs in edge-on spiral galaxies. MNRAS 334:646ADSCrossRefGoogle Scholar
  121. Kusenko A (2009) Sterile neutrinos: the dark side of the light fermions. Phys Rep 481:1ADSCrossRefGoogle Scholar
  122. Kuzio de Naray R, McGaugh SS, de Blok WJG (2008) Mass models for low surface brightness galaxies with high-resolution optical velocity fields. ApJ 676:920ADSCrossRefGoogle Scholar
  123. Lapi A, Salucci P, Danese L (2018) Precision scaling relations for disk galaxies in the local universe. ApJ 859:2ADSCrossRefGoogle Scholar
  124. Lelli F, McGaugh SS, Schombert JM (2016a) The small scatter of the baryonic Tully–Fisher relation. ApJL 816:L14ADSCrossRefGoogle Scholar
  125. Lelli F, McGaugh SS, Schombert JM (2016b) SPARC: mass models for 175 disk galaxies with Spitzer photometry and accurate rotation curves. AJ 152:157ADSCrossRefGoogle Scholar
  126. Li B, Shapiro PR, Rindler-Daller T (2017) Bose–Einstein-condensed scalar field dark matter and the gravitational wave background from inflation: new cosmological constraints and its detectability by LIGO. PRD 96:063505ADSCrossRefGoogle Scholar
  127. Lisanti M (2017) Lectures on dark matter physics. In: Polchinski J, Vieira P, DeWolfe O (eds) New frontiers in fields and strings. World Scientific, Singapore, pp 399–446CrossRefGoogle Scholar
  128. Magoulas C, Springob CM, Colless M et al (2012) The 6dF Galaxy Survey: the near-infrared Fundamental Plane of early-type galaxies. MNRAS 427:245ADSCrossRefGoogle Scholar
  129. Mamon G, Lokas EL (2005) Dark matter in elliptical galaxies—II. Estimating the mass within the virial radius. MNRAS 363:705ADSCrossRefGoogle Scholar
  130. Maraston C (2013) In: Thomas D, Pasquali A, Ferreras I (eds) The intriguing life of massive galaxies (IAU S295). Cambridge University Press, Cambridge, p 272Google Scholar
  131. Martinsson T, Verheijen M, Westfall K et al (2013) The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies. A&A 557:131CrossRefGoogle Scholar
  132. Matteucci F (2012) Chemical evolution of galaxies. Springer, BerlinCrossRefGoogle Scholar
  133. McGaugh SS (2005) The baryonic Tully–Fisher relation of galaxies with extended rotation curves and the stellar mass of rotating galaxies. ApJ 632:859ADSCrossRefGoogle Scholar
  134. McGaugh SS, Schombert JM, Bothun GD, de Blok WJG (2000) The baryonic Tully–Fisher relation. ApJL 533:L99ADSCrossRefGoogle Scholar
  135. McMillan PJ (2011) Mass models of the Milky Way. MNRAS 414:2446ADSCrossRefGoogle Scholar
  136. Moster BP, Somerville RS, Maulbetsch C et al (2010) Constraints on the relationship between stellar mass and halo mass at low and high redshift. ApJ 710:903ADSCrossRefGoogle Scholar
  137. Müller O, Pawlowski MS, Jerjen T et al (2018) A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology. Science 359:534ADSMathSciNetCrossRefGoogle Scholar
  138. Munshi D, Valageas P, van Waerbeke L, Heavens A (2008) Cosmology with weak lensing surveys. Phys Rep 462:67ADSCrossRefGoogle Scholar
  139. Naab T, Ostriker JP (2017) Theoretical challenges in galaxy formation. ARAA 55:59ADSCrossRefGoogle Scholar
  140. Navarro JF, Frenk CS, White SDM (1997) A universal density profile from hierarchical clustering. ApJ 490:493ADSCrossRefGoogle Scholar
  141. Nesti F, Salucci P (2013) The dark matter halo of the Milky Way, AD 2013. JCAP 7:16ADSCrossRefGoogle Scholar
  142. Noordermeer E, van der Hulst JM, Sancisi R et al (2007) The mass distribution in early-type disc galaxies: declining rotation curves and correlations with optical properties. MNRAS 376:1513ADSCrossRefGoogle Scholar
  143. Oguri M et al (2014) The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses. MNRAS 439:2494ADSCrossRefGoogle Scholar
  144. Oh S-H (2008) High-resolution mass models of dwarf galaxies from LITTLE THINGS. AJ 136:2761ADSCrossRefGoogle Scholar
  145. Oh S-H, Brook C, Governato F (2011) Dark and luminous matter in THINGS dwarf galaxies. AJ 142:24ADSCrossRefGoogle Scholar
  146. Oh S-H, Hunter DA, Brinks E et al (2015) High-resolution mass models of dwarf galaxies from LITTLE THINGS. AJ 149:180ADSCrossRefGoogle Scholar
  147. Oman KA, Navarro JF, Fattahi A et al (2015) The unexpected diversity of dwarf galaxy rotation curves. MNRAS 452:3650ADSCrossRefGoogle Scholar
  148. Palunas P, Williams TB (2000) Maximum disk mass models for spiral galaxies. AJ 120:2884ADSCrossRefGoogle Scholar
  149. Pascale R, Posti L, Nipoti C, Binney J (2018) Action-based dynamical models of dwarf spheroidal galaxies: application to Fornax. MNRAS 480:927ADSCrossRefGoogle Scholar
  150. Pato M, Iocco F (2017) galkin: a new compilation of Milky Way rotation curve data. SoftwareX 6:54ADSCrossRefGoogle Scholar
  151. Persic M, Salucci P (1990) Mass decomposition of spiral galaxies from disc kinematics. MNRAS 245:577ADSGoogle Scholar
  152. Persic M, Salucci P (1991) The universal galaxy rotation curve. ApJ 368:60ADSCrossRefGoogle Scholar
  153. Persic M, Salucci P (1995) Rotation curves of 967 spiral galaxies. ApJS 99:501ADSCrossRefGoogle Scholar
  154. Persic M, Salucci P, Stel F (1996) The universal rotation curve of spiral galaxies—I. The dark matter connection. MNRAS 281:27ADSCrossRefGoogle Scholar
  155. Collaboration Planck, Ade PAR, Aghanim N (2016) Planck 2015 results. XIII. Cosmological parameters. A&A 594:A13ADSCrossRefGoogle Scholar
  156. Plummer HC (1915) The distribution of stars in globular clusters. MNRAS 76:107ADSCrossRefGoogle Scholar
  157. Poci A, Cappellari M, McDermid RM (2017) Systematic trends in total-mass profiles from dynamical models of early-type galaxies. MNRAS 467:1397ADSGoogle Scholar
  158. Ponomareva AA, Verheijen MAW, Papastergis E (2018) The multiwavelength Tully–Fisher relation with spatially resolved HI kinematics. MNRAS 474:4366ADSCrossRefGoogle Scholar
  159. Posacki S, Cappellari M, Treu T et al (2015) The stellar initial mass function of early-type galaxies from low to high stellar velocity dispersion: homogeneous analysis of ATLAS\(^{3D}\) and Sloan Lens ACS galaxies. MNRAS 446:493ADSCrossRefGoogle Scholar
  160. Pulsoni C, Gerhard O, Arnaboldi M et al (2017) The extended Planetary Nebula Spectrograph (ePN.S) early-type galaxy survey: the kinematic diversity of stellar halos and the relation between halo transition scale and stellar mass. A&A 618:A94ADSCrossRefGoogle Scholar
  161. Ratnam C, Salucci P (2000) The mass distribution in the innermost regions of spiral galaxies. NewA 5:427ADSCrossRefGoogle Scholar
  162. Richards EE, van Zee L, Barnes KL (2015) Baryonic distributions in galaxy dark matter haloes—II. Final results. MNRAS 449:3981ADSCrossRefGoogle Scholar
  163. Ringwald A (2012) Exploring the role of axions and other WISPs in the dark universe. Phys Dark Univ 1:116CrossRefGoogle Scholar
  164. Roberts MS (1978) The rotation curves of galaxies. AJ 83:1026ADSCrossRefGoogle Scholar
  165. Roszkowski L, Sessolo EM, Trojanowski S (2017) WIMP dark matter candidates and searches—current status and future prospects. Rep Prog Phys 81:066201ADSMathSciNetCrossRefGoogle Scholar
  166. Rubin VC, Ford WK Jr, Thonnard N (1980) Rotational properties of 21 Sc galaxies with a large range of luminosities and radii, from NGC 4605 (\(R = 4\) kpc) to UGC 2885 (\(R = 122\) kpc). ApJ 238:471ADSCrossRefGoogle Scholar
  167. Salucci P (2001) The constant-density region of the dark haloes of spiral galaxies. MNRAS 320:L1ADSCrossRefGoogle Scholar
  168. Salucci P, Burkert A (2000) Dark matter scaling relations. ApJL 537:L9ADSCrossRefGoogle Scholar
  169. Salucci P, Turini N (2017) Evidences for collisional dark matter in galaxies? ArXiv e-print. arXiv:1707.01059
  170. Salucci P, Frenk CS, Persic M (1993) A physical distance indicator for spiral galaxies and the determination of \(H_0\). MNRAS 262:392ADSCrossRefGoogle Scholar
  171. Salucci P, Lapi A, Tonini C, Gentile G, Yegorova I, Klein U (2007) The universal rotation curve of spiral galaxies—II. The dark matter distribution out to the virial radius. MNRAS 378:41ADSCrossRefGoogle Scholar
  172. Salucci P, Yegorova IA, Drory N (2008) The disc mass of spiral galaxies. MNRAS 388:159ADSCrossRefGoogle Scholar
  173. Salucci P, Nesti F, Gentile G, Frigerio Martins C (2010) Dark matter scaling relations. A&A 523:83ADSCrossRefGoogle Scholar
  174. Salucci P, Wilkinson MI, Walker MG et al (2012) Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws. MNRAS 420:2034ADSCrossRefGoogle Scholar
  175. Schneider P (1996) Detection of (dark) matter concentrations via weak gravitational lensing. MNRAS 283:837ADSCrossRefGoogle Scholar
  176. Serra P, Oosterloo T, Cappellari M, den Heijer M, Jozsa GIG (2016) Linear relation between HI circular velocity and stellar velocity dispersion in early-type galaxies, and slope of the density profiles. MNRAS 460:1382ADSCrossRefGoogle Scholar
  177. Shankar F, Lapi A, Salucci P (2006) New relationships between galaxy properties and host halo mass, and the role of feedbacks in galaxy formation. ApJ 643:14ADSCrossRefGoogle Scholar
  178. Shi X, Fuller GM (1999) New dark matter candidate: nonthermal sterile neutrinos. PRL 82:2832ADSCrossRefGoogle Scholar
  179. Shi D (2017) Deep imaging of the HCG 95 field. I. Ultra-diffuse galaxies. ApJ 846:26ADSCrossRefGoogle Scholar
  180. Simon JD, Bolatto AD, Leroy A, Blitz L, Gates EL (2005) High-resolution measurements of the halos of four dark matter-dominated galaxies: deviations from a universal density profile. Astrophys J 621(2):757–776.  https://doi.org/10.1086/427684 ADSCrossRefGoogle Scholar
  181. Sofue Y (2013) Rotation curve and mass distribution in the galactic center—from black hole to entire galaxy. PASJ 65:118ADSCrossRefGoogle Scholar
  182. Sofue Y (2017) Rotation and mass in the Milky Way and spiral galaxies. PASJ 69:R1ADSCrossRefGoogle Scholar
  183. Somerville RS, Dave R (2015) Physical models of galaxy formation in a cosmological framework. ARAA 53:51ADSCrossRefGoogle Scholar
  184. Spano M, Marcelin M, Amram P et al (2008) GHASP: an H\(\alpha \) kinematic survey of spiral and irregular galaxies—V. Dark matter distribution in 36 nearby spiral galaxies. MNRAS 383:297ADSCrossRefGoogle Scholar
  185. Spekkens K, Giovanelli R, Haynes MP (2005) The cusp/core problem in galactic halos: long-slit spectra for a large dwarf galaxy sample. AJ 129:2119ADSCrossRefGoogle Scholar
  186. Spergel DN, Steinhardt PJ (2000) Observational evidence for self-interacting cold dark matter. PRL 84:3760ADSCrossRefGoogle Scholar
  187. Steigman S, Turner MS (1985) Cosmological constraints on the properties of weakly interacting massive particles. Nucl Phys B 253:375ADSCrossRefGoogle Scholar
  188. Strauss MJ, Willick JA (1995) The density and peculiar velocity fields of nearby galaxies. Phys Rep 261:271ADSCrossRefGoogle Scholar
  189. Strigari LE, Bullock JS, Kaplinghat M et al (2008) A common mass scale for satellite galaxies of the Milky Way. Nature 454:1096ADSCrossRefGoogle Scholar
  190. Strigari LE, Frenk CS, White SDM (2018) Dynamical constraints on the dark matter distribution of the sculptor dwarf spheroidal from stellar proper motions. ApJ 860:56ADSCrossRefGoogle Scholar
  191. Thomas J, Saglia RP, Bender R et al (2011) Dynamical masses of early-type galaxies: a comparison to lensing results and implications for the stellar initial mass function and the distribution of dark matter. MNRAS 415:545ADSCrossRefGoogle Scholar
  192. Tinsley BM (1981) Correlation of the dark mass in galaxies with Hubble type. MNRAS 194:63ADSCrossRefGoogle Scholar
  193. Tiret O, Salucci P, Bernardi M, Maraston C, Pforr J (2011) The inner structure of very massive elliptical galaxies: implications for the inside-out formation mechanism of \(z \sim 2\) galaxies. MNRAS 411:1435ADSCrossRefGoogle Scholar
  194. Toloba E, Lim S, Peng E et al (2018) Dark matter in ultra-diffuse galaxies in the Virgo cluster from their globular cluster populations. ApJL 856:L31ADSCrossRefGoogle Scholar
  195. Tortora C, La Barbera F, Napolitano NR et al (2014) Systematic variations of central mass density slopes in early-type galaxies. MNRAS 445:115ADSCrossRefGoogle Scholar
  196. Tortora C, Napolitano NR, Roy N et al (2018) The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey. MNRAS 473:969ADSCrossRefGoogle Scholar
  197. Treu T (2010) Strong lensing by galaxies. ARAA 48:87ADSCrossRefGoogle Scholar
  198. Tulin S, Yu H, Zurek KM (2013) Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure. PRD 87:115007ADSCrossRefGoogle Scholar
  199. Tully RB, Fisher JR (1977) A new method of determining distances to galaxies. A&A 54:661ADSGoogle Scholar
  200. Turner MS (2018) \(\varLambda \)CDM: much more than we expected, but now less than what we want. Found Phys 48:1261ADSCrossRefGoogle Scholar
  201. van Albada TS, Bahcall JN, Begeman K et al (1985) Distribution of dark matter in the spiral galaxy NGC 3198. ApJ 295:305ADSCrossRefGoogle Scholar
  202. van der Kruit PC (1988) The three-dimensional distribution of light and mass in disks of spiral galaxies. A&A 192:117ADSGoogle Scholar
  203. van der Kruit PC, Freeman KC (2011) Galaxy disks. ARAA 49:301–371ADSCrossRefGoogle Scholar
  204. van der Kruit PC, Searle L (1981) Surface photometry of edge-on spiral galaxies. I—a model for the three-dimensional distribution of light in galactic disks. A&A 95:105ADSGoogle Scholar
  205. van Dokkum PG, Romanowsky AJ, Abraham R et al (2015) Spectroscopic confirmation of the existence of large, diffuse galaxies in the coma cluster. ApJL 804:L26ADSCrossRefGoogle Scholar
  206. Verheijen MAW (2001) The ursa major cluster of galaxies. V. HI rotation curve shapes and the Tully–Fisher relations. ApJ 563:694ADSCrossRefGoogle Scholar
  207. Viel M, Branchini E, Cen R et al (2005) Tracing the warm-hot intergalactic medium in the local Universe. MNRAS 360:1110ADSCrossRefGoogle Scholar
  208. Vogelsberger M, Genel S, Springel V et al (2014) Properties of galaxies reproduced by a hydrodynamic simulation. Nature 509:177ADSCrossRefGoogle Scholar
  209. Vogt NP, Haynes MP, Herter T, Giovanelli R (2004a) \(M/L\), H\(\alpha \) rotation curves, and HI gas measurements for 329 nearby cluster and field spirals. III. Evolution in fundamental galaxy parameters. AJ 127:3273ADSCrossRefGoogle Scholar
  210. Vogt NP, Haynes MP, Herter T, Giovanelli R (2004b) \(M/L\), H\(\alpha \) rotation curves, and HI measurements for 329 nearby cluster and field spirals. I. Data. AJ 127:3325ADSCrossRefGoogle Scholar
  211. Walker M (2013) Dark matter in the galactic dwarf spheroidal satellites. In: Oswalt TD, Gilmore G (eds) Planets, stars and stellar systems 5. Springer, Dordrecht, pp 1039–1089CrossRefGoogle Scholar
  212. Walker MG, Penarrubia J (2011) A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. ApJ 742:20ADSCrossRefGoogle Scholar
  213. Walker MG, Mateo M, Olszewski EW (2009a) Stellar velocities in the Carina, Fornax, Sculptor, and Sextans dSph galaxies: data from the Magellan/MMFS Survey. AJ 137:3100ADSCrossRefGoogle Scholar
  214. Walker MG, Mateo M, Olszewski EW et al (2009b) A universal mass profile for dwarf spheroidal galaxies? ApJ 704:1274ADSCrossRefGoogle Scholar
  215. Wang J, Fu J, Aumer M et al (2014) An observational and theoretical view of the radial distribution of HI gas in galaxies. MNRAS 441:2159ADSCrossRefGoogle Scholar
  216. Watkins LL, Evans NW, An JH (2010) The masses of the Milky Way and Andromeda galaxies. MNRAS 406:264ADSCrossRefGoogle Scholar
  217. Wechsler RH, Tinker JL (2018) The connection between galaxies and their dark matter halos. ARAA 56:435ADSCrossRefGoogle Scholar
  218. Wechsler RH, Zentner AR, Bullock JS et al (2006) The dependence of halo clustering on halo formation history, concentration, and occupation. ApJ 652:71ADSCrossRefGoogle Scholar
  219. Weinberg S (1978) A new light boson? PRL 40:223ADSCrossRefGoogle Scholar
  220. Wolf J, Martinez GD, Bullock JS et al (2010) Accurate masses for dispersion-supported galaxies. MNRAS 406:1220ADSGoogle Scholar
  221. Xue XX et al (2008) The Milky Way’s circular velocity curve to 60 kpc and an estimate of the dark matter halo mass from the kinematics of \(\sim \)2400 SDSS blue horizontal-branch stars. ApJ 684:1143ADSCrossRefGoogle Scholar
  222. Yegorova IA, Salucci P (2007) The radial Tully–Fisher relation for spiral galaxies—I. MNRAS 377:507ADSCrossRefGoogle Scholar
  223. Zaritsky D (2012) Implications and applications of kinematic galaxy scaling relations. ISRN Astron Astrophys 2012:189625CrossRefGoogle Scholar
  224. Zavala J, Vogelsberger M, Walker MG (2013) Constraining self-interacting dark matter with the Milky Way’s dwarf spheroidals. MNRAS 431:L20ADSCrossRefGoogle Scholar
  225. Zhao H (1996) Analytical models for galactic nuclei. MNRAS 278:488ADSCrossRefGoogle Scholar
  226. Zu Y, Mandelbaum R (2015) Mapping stellar content to dark matter haloes using galaxy clustering and galaxy-galaxy lensing in the SDSS DR7. MNRAS 454:1161ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.SISSATriesteItaly

Personalised recommendations