Advertisement

A density-and-strain-based K-clustering approach to microstructural topology optimization

  • Tej KumarEmail author
  • Krishnan Suresh
Research Paper
  • 165 Downloads

Abstract

Microstructural topology optimization (MTO) is the simultaneous optimization of macroscale topology and microscale structure. MTO holds the promise of enhancing product-performance beyond what is possible today. Furthermore, with the advent of additive manufacturing, the resulting multiscale structures can be fabricated with relative ease. There are however two significant challenges associated with MTO: (1) high computational cost, and (2) potential loss of microstructural connectivity. In this paper, a novel density-and-strain-based K-means clustering method is proposed to reduce the computational cost of MTO. Further, a rotational degree of freedom is introduced to fully utilize the anisotropic nature of microstructures. Finally, the connectivity issue is addressed through auxiliary finite element fields. The proposed concepts are illustrated through several numerical examples applied to two-dimensional single-load problems.

Keywords

Topology optimization Microstructural optimization design Clustering Principal strain 

Notes

Funding information

The authors would like to thank the support of the National Science Foundation through grant 1561899. Prof. Krishnan is a consulting Chief Scientific Officer of SciArt, Corp, which has licensed the Pareto technology, developed in Prof. Suresh’s lab, through Wisconsin Alumni Research Foundation.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. Alexandersen J, Lazarov BS (2015) Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput Meth Appl Mech Eng 290(290):156–182. arXiv:1411.3923 MathSciNetzbMATHCrossRefGoogle Scholar
  2. Allaire G, Aubry S (1999) On optimal microstructures for a plane shape optimization problem. Structural Optimization 17(2):86–94CrossRefGoogle Scholar
  3. Allaire G, Geoffroy-Donders P, Pantz O (2018) Topology optimization of modulated and oriented periodic microstructures by the homogenization method. Computers and Mathematics with ApplicationsGoogle Scholar
  4. Arthur D, Vassilvitskii S (2007) K-means++: the advantages of careful seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp 1027–1025. arXiv:1212.1121
  5. Avellaneda M (1987) Optimal bounds and microgeometries for elastic two-phase composites. Siam J Appl Math 47(6):1216–1228MathSciNetzbMATHCrossRefGoogle Scholar
  6. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural Optimization 1 (4):193–202CrossRefGoogle Scholar
  7. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetzbMATHCrossRefGoogle Scholar
  8. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654zbMATHCrossRefGoogle Scholar
  9. Bendsøe MP, Sigmund O (2004) Topology optimization. Springer, BerlinzbMATHCrossRefGoogle Scholar
  10. Bendsøe MP, Guedes JM, Haber RB, Pedersen P, Taylor JE (1994) An analytical model to predict optimal material properties in the context of optimal structural design. J Appl Mech 61(4):930MathSciNetzbMATHCrossRefGoogle Scholar
  11. Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Opt 35(2):107–115CrossRefGoogle Scholar
  12. Cramer AD, Challis VJ, Roberts AP (2016) Microstructure interpolation for macroscopic design. Struct Multidiscip Optim 53(3):489–500MathSciNetCrossRefGoogle Scholar
  13. Deng J, Chen W (2017) Concurrent topology optimization of multiscale structures with multiple porous materials under random field loading uncertainty. Struct Multidiscip Optim 56(1):1–19MathSciNetCrossRefGoogle Scholar
  14. Deng S, Suresh K (2015) Multi-constrained topology optimization via the topological sensitivity. Struct Multidiscip Optim 51(5):987–1001MathSciNetCrossRefGoogle Scholar
  15. Deng S, Suresh K (2017) Stress constrained thermo-elastic topology optimization with varying temperature fields via augmented topological sensitivity based level-set. Structural and Multidisciplinary Optimization 56(6):1413–1427MathSciNetCrossRefGoogle Scholar
  16. Deng J, Yan J, Cheng G (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47(4):583–597MathSciNetzbMATHCrossRefGoogle Scholar
  17. Du Z, Zhou X, Picelli R, Kim HA (2018) Connecting microstructures for multiscale topology optimization with connectivity index constraints. J Mech Des 140(11):111417CrossRefGoogle Scholar
  18. Ferrer A, Cante JC, Hernández JA, Oliver J (2017) Two-scale topology optimization in computational material design: an integrated approach. Int J Numer Methods Eng 114:232–254MathSciNetCrossRefGoogle Scholar
  19. Francfort GA, Murat F (1986) Homogenization and optimal bounds in linear elasticity. Arch Ration Mech Anal 94(4):307–334MathSciNetzbMATHCrossRefGoogle Scholar
  20. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. CAD Computer Aided Design 69:65–89CrossRefGoogle Scholar
  21. Groen JP, Sigmund O (2018) Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int J Numer Methods Eng 113(8):1148–1163MathSciNetCrossRefGoogle Scholar
  22. Groen JP, Wu J, Sigmund O (2019) Homogenization-based stiffness optimization and projection of 2D coated structures with orthotropic infill. Computer Methods in Applied Mechanics and EngineeringGoogle Scholar
  23. Hassani B, Hinton E (1998) A review of homogenization and topology optimization i - homogenization theory for media with periodic structure. Comput Struct 69(6):707–717zbMATHCrossRefGoogle Scholar
  24. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10(4):343–352MathSciNetzbMATHCrossRefGoogle Scholar
  25. Huang X, Radman A, Xie YM (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50(6):1861–1870. arXiv:0702674v1 CrossRefGoogle Scholar
  26. Huang X, Zhou SW, Xie YM, Li Q (2013) Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput Mater Sci 67:397–407CrossRefGoogle Scholar
  27. Jog CS, Haber RB, Bendsøe MP (1994) Topology design with optimized, self-adaptive materials. Int J Numer Meth Eng 37(8):1323–1350MathSciNetzbMATHCrossRefGoogle Scholar
  28. Kočvara M, Stingl M, Zowe J (2008) Free material optimization: recent progress. Optimization 57 (1):79–100MathSciNetzbMATHCrossRefGoogle Scholar
  29. Li H, Luo Z, Gao L, Qin Q (2018) Topology optimization for concurrent design of structures with multi-patch microstructures by level sets. Comput Methods Appl Mech Eng 328:340–364MathSciNetCrossRefGoogle Scholar
  30. Liu ST, Cheng GD, Gu Y, Zheng XG (2002) Mapping method for sensitivity analysis of composite material property. Struct Multidiscip Optim 24(3):212–217CrossRefGoogle Scholar
  31. Liu L, Yan J, Cheng G (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13-14):1417–1425CrossRefGoogle Scholar
  32. Liu C, Du Z, Zhang W, Zhu Y, Guo X (2017) Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization. J Appl Mech 84(8):081008CrossRefGoogle Scholar
  33. Liu K, Detwiler D, Tovar A (2018a) Cluster-based optimization of cellular materials and structures for crashworthiness. J Mech Des 140(11):111412Google Scholar
  34. Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li L, Kato J, Tang J, Wang CC, Cheng L, Liang X, To AC (2018b) Current and future trends in topology optimization for additive manufacturing. Struct Multidiscip Opt 57(6):2457–2483Google Scholar
  35. Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137MathSciNetzbMATHCrossRefGoogle Scholar
  36. Milton GW, Cherkaev AV (1995) Which elasticity tensors are realizable? J Eng Mater Technol 117(4):483CrossRefGoogle Scholar
  37. Nakshatrala PB, Tortorelli DA, Nakshatrala KB (2013) Nonlinear structural design using multiscale topology optimization. Part I: Static formulation. Comput Meth Appl Mech Eng 261-262:167–176MathSciNetzbMATHCrossRefGoogle Scholar
  38. Novotny AA, Feijóo RA, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Methods Appl Mech Eng 192(7-8):803–829MathSciNetzbMATHCrossRefGoogle Scholar
  39. Osanov M, Guest JK (2016) Topology optimization for architected materials design. Annu Rev Mater Res 46(1):211–233CrossRefGoogle Scholar
  40. Pantz O, Trabelsi K (2008) A post-treatment of the homogenization method for shape optimization. SIAM J Control Optim 47(3):1380–1398MathSciNetzbMATHCrossRefGoogle Scholar
  41. Pedersen P (1989) On optimal orientation of orthotropic materials. Structural Optimization 1(2):101–106CrossRefGoogle Scholar
  42. Rodrigues HC, Guedes JM (2002) Hierarchical optimization of material and structure. Struct Multidiscip Opt 24(1):1–10CrossRefGoogle Scholar
  43. Schury F, Stingl M, Wein F (2012) Efficient two-scale optimization of manufacturable graded structures. SIAM J Sci Comput 34(6):B711–B733. arXiv:1309.5548v1 MathSciNetzbMATHCrossRefGoogle Scholar
  44. Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528. arXiv:1011.1669v3 MathSciNetzbMATHCrossRefGoogle Scholar
  45. Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329MathSciNetzbMATHCrossRefGoogle Scholar
  46. Sigmund O (2000) New class of extremal composites. J Mech Phys Solids 48(2):397–428MathSciNetzbMATHCrossRefGoogle Scholar
  47. Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21 (2):120–127MathSciNetCrossRefGoogle Scholar
  48. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424CrossRefGoogle Scholar
  49. Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055MathSciNetCrossRefGoogle Scholar
  50. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRefGoogle Scholar
  51. Sigmund O, Aage N, Andreassen E (2016) On the (non-)optimality of Michell structures. Struct Multidiscip Optim 54(2):361–373MathSciNetCrossRefGoogle Scholar
  52. Sivapuram R, Dunning PD, Kim HA (2016) Simultaneous material and structural optimization by multiscale topology optimization. Struct Multidiscip Optim 54(5):1267–1281MathSciNetCrossRefGoogle Scholar
  53. Vigdergauz SB (1989) Regular structures with extremal elastic properties. Mechanics of Solids 24(3):57–63Google Scholar
  54. Vigdergauz S (1994) Two-dimensional grained composites of extreme rigidity. J Appl Mech 61(2):390zbMATHCrossRefGoogle Scholar
  55. Vogiatzis P, Chen S, Wang X, Li T, Wang L (2017) Topology optimization of multi-material negative poisson’s ratio metamaterials using a reconciled level set method. CAD Computer Aided Design 83:15–32MathSciNetCrossRefGoogle Scholar
  56. Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246MathSciNetzbMATHCrossRefGoogle Scholar
  57. Wang Y, Chen F, Wang MY (2017a) Concurrent design with connectable graded microstructures. Comput Methods Appl Mech Eng 317:84–101Google Scholar
  58. Wang Y, Xu H, Pasini D (2017b) Multiscale isogeometric topology optimization for lattice materials. Comput Methods Appl Mech Eng 316:568–585Google Scholar
  59. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRefGoogle Scholar
  60. Xie YM, Yang X, Shen J, Yan X, Ghaedizadeh A, Rong J, Huang X, Zhou S (2014) Designing orthotropic materials for negative or zero compressibility. Int J Solids Struct 51(23-24):4038–4051CrossRefGoogle Scholar
  61. Xu L, Cheng G (2018) Two-scale concurrent topology optimization with multiple micro materials based on principal stress orientation. Struct Multidiscip Optim 57(5):2093–2107MathSciNetCrossRefGoogle Scholar
  62. Yan X, Huang X, Zha Y, Xie YM (2014) Concurrent topology optimization of structures and their composite microstructures. Comput Struct 133:103–110CrossRefGoogle Scholar
  63. Yang XY, Xei YM, Steven GP, Querin OM (1999) Bidirectional evolutionary method for stiffness optimization. AIAA J 37(11):1483–1488CrossRefGoogle Scholar
  64. Zhang W, Sun S (2006) Scale-related topology optimization of cellular materials and structures. Int J Numer Methods Eng 68(9):993–1011zbMATHCrossRefGoogle Scholar
  65. Zhang Y, Xiao M, Li H, Gao L, Chu S (2018) Multiscale concurrent topology optimization for cellular structures with multiple microstructures based on ordered SIMP interpolation. Comput Mater Sci 155:74–91CrossRefGoogle Scholar
  66. Zhou S, Li Q (2008) Design of graded two-phase microstructures for tailored elasticity gradients. J Mater Sci 43(15):5157–5167CrossRefGoogle Scholar
  67. Zhu Y, Li S, Du Z, Liu C, Guo X, Zhang W (2019) A novel asymptotic-analysis-based homogenisation approach towards fast design of infill graded microstructures. J Mech Phys Solids 124:612–633MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations