Comparison of uncertainty quantification process using statistical and data mining algorithms

  • W. Chai
  • A. Saidi
  • A. Zine
  • C. DrozEmail author
  • W. You
  • M. Ichchou
Research Paper


Uncertainty quantification has always been an important topic in model reduction and simulation of complex systems. In this aspect, global sensitivity analysis (GSA) methods such as Fourier amplitude sensitivity test (FAST) are well recognized as effective algorithms. Recently, some data-based metamodeler such as Random Forest (RF) also developed their own variable importance selection solutions for parameters with perturbations. This paper proposes a visual comparison of these two uncertainty quantification methods, using datasets retrieved from vibroacoustic models. Their results have a lot in common and are capable to explain many results. The remarkable agreement between methods under fundamentally different definitions can potentially improve their compatibility in various occasions.


Global sensitivity analysis Random forest Fourier amplitude sensitivity test Sound transmission loss Sandwich panel Composite material 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bellman R, Corporation R (1957) Dynamic programming, Rand Corporation research study. Princeton University Press, Princeton. ISBN 9780691079516Google Scholar
  2. Borgonovo E, Apostolakis GE, Tarantola S, Saltelli A (2003) Comparison of global sensitivity analysis techniques and importance measures in PSA. Reliab Eng Syst Saf 79(2):175–185CrossRefGoogle Scholar
  3. Breiman LEO (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  4. Christen J-L, Ichchou M, Troclet B, Bareille O, Ouisse M (2016) Global sensitivity analysis of analytical vibroacoustic transmission models. J Sound Vib 368:121–134CrossRefGoogle Scholar
  5. Christen J-L, Ichchou M, Troclet B, Bareille O, Ouisse M (2017) Global sensitivity analysis and uncertainties in SEA models of vibroacoustic systems. Mech Syst Signal Process 90:365– 377CrossRefGoogle Scholar
  6. Coulston JW, Blinn CE, Thomas VA, Wynne RH (2016) Approximating prediction uncertainty for random forest regression models. Photogramm Eng Remote Sens 82(3):189–197CrossRefGoogle Scholar
  7. Cukier R, Fortuin C, Shuler KE, Petschek A, Schaibly J (1973) Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. J Chem Phys 59(8):3873–3878CrossRefGoogle Scholar
  8. Cutler CB, Legano LA, Dreyer BP, Fierman AH, Berkule SB, Lusskin SI, Tomopoulos S, Roth M, Mendelsohn AL (2007) Screening for maternal depression in a low education population using a two item questionnaire. Arch Womens Ment Health 10(6):277CrossRefGoogle Scholar
  9. Ferretti F, Saltelli A, Tarantola S (2016) Trends in sensitivity analysis practice in the last decade. Sci Total Environ 568:666–670CrossRefGoogle Scholar
  10. Gaspar A, Lopez-Caballero F (2016) Methodology for a probabilistic analysis of an RCC gravity dam construction. Modelling of temperature, hydration degree and ageing degree fields. Stochastic Environmental Research and Risk AssessmentGoogle Scholar
  11. Gatelli D, Kucherenko S, Ratto M, Tarantola S (2009) Calculating first-order sensitivity measures: a benchmark of some recent methodologies. Reliab Eng Syst Saf 94(7):1212–1219CrossRefGoogle Scholar
  12. Hengl T, Nussbaum M, Wright MN, Gbm H, Grüler B (2018) Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 6(8):e5518CrossRefGoogle Scholar
  13. Igusa T, Xu K (1994) Vibration control using multiple tuned mass dampers. J Sound Vib 175(4):491–503CrossRefGoogle Scholar
  14. Klassen AF, Klaassen R, Dix D, Pritchard S, Yanofsky R, O’Donnell M, Scott A, Sung L (2008) Impact of caring for a child with cancer on parents’ health-related quality of life. J Clin Oncol 26(36):5884–5889CrossRefGoogle Scholar
  15. McRae GJ, Tilden JW, Seinfeld JH (1982) Global sensitivity analysis: a computational implementation of the Fourier Amplitude Sensitivity Test (FAST). Comput Chem Eng 6(1):15–25CrossRefGoogle Scholar
  16. Mead D, Markus S (1969) The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J Sound Vib 10:163–175CrossRefGoogle Scholar
  17. Morizet N, Godin N, Tang J, Maillet E, Fregonese M, Normand B (2016) Classification of acoustic emission signals using wavelets and Random Forests: application to localized corrosion. Mech Syst Signal Process 70:1026–1037CrossRefGoogle Scholar
  18. Saltelli A, Bolado R (1998) An alternative way to compute Fourier amplitude sensitivity test (FAST). Comput Stat Data Anal 26(4):445–460CrossRefGoogle Scholar
  19. Saltelli A, Ratto M, Tarantola S, Campolongo F (2005) Sensitivity analysis for chemical models. Chem Rev 105(7):2811–2828CrossRefGoogle Scholar
  20. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. Wiley, ChichesterzbMATHGoogle Scholar
  21. Saltelli A, Tarantola S, Chan K-S (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1):39–56CrossRefGoogle Scholar
  22. Sobol’ IM (1990) On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie 2(1):112–118MathSciNetzbMATHGoogle Scholar
  23. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1):271–280MathSciNetCrossRefGoogle Scholar
  24. Wang Z, Lai C, Chen X, Yang B, Zhao S, Bai X (2015) Flood hazard risk assessment model based on random forest. J Hydrol 527:1130–1141CrossRefGoogle Scholar
  25. Xu C, Gertner G (2011) Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST). Comput Stat Data Anal 55(1):184–198MathSciNetCrossRefGoogle Scholar
  26. Yang Y, Mace BR, Kingan MJ, Yang Y, Mace BR, Kingan MJ (2017) Finite element method prediction of sound transmission through, and radiation from, panels using a wave and finite element method a). J Acoust Soc Am 141:2452–2460CrossRefGoogle Scholar
  27. Zaklouta F, Stanciulescu B (2011) Real-time traffic sign recognition using spatially weighted HOG trees. In: International conference on advanced roboticsGoogle Scholar
  28. Zhang Q, Yang X, Li P, Huang G, Feng S, Shen C, Han B, Zhang X, Jin F, Xu F, Lu TJ (2015) Bioinspired engineering of honeycomb structure - using nature to inspire human innovation. Prog Mater Sci 74:332–400CrossRefGoogle Scholar
  29. Zheng C, Wang Q (2015) Spatiotemporal pattern of the global sensitivity of the reference evapotranspiration to climatic variables in recent five decades over China, Stochastic Environmental Research and Risk Assessment (July), ISSN 1436-3259Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Vibroacoustics & Complex Media Research Group, LTDS - CNRS UMR 5513École Centrale de LyonÉcullyFrance
  2. 2.LIRIS - CNRS UMR 5205École Centrale de LyonÉcullyFrance
  3. 3.ICJ - CNRS UMR 5208École Centrale de LyonÉcullyFrance

Personalised recommendations