Advertisement

Structural and Multidisciplinary Optimization

, Volume 60, Issue 6, pp 2531–2558 | Cite as

3D multi-material and multi-joint topology optimization with tooling accessibility constraints

  • Vlad Florea
  • Manish Pamwar
  • Balbir Sangha
  • Il Yong KimEmail author
Research Paper
  • 282 Downloads

Abstract

This paper proposes a method for performing both multi-material topology optimization and multi-joint topology optimization. The algorithm can determine the optimum placement and selection of material while also optimizing the choice and placement of joint material between components. This method can simultaneously minimize the compliance of the structure as well as the total joint cost while subjected to a mass fraction constraint. A decomposition approach is used to break up the coupling between optimum structural design and optimum joint design. Multi-material and multi-joint topology optimization are then solved sequentially, controlled by an outer loop. By decomposing the problem, gradient-based optimization algorithms can be utilized, enabling the algorithm to solve large computational models efficiently. The proposed process is applied to three 3D standard TO problems. Through these example problems, the need for an iterative process is demonstrated. Improvements to joint manufacturability using the tooling and stress constraints are discussed. Finally, a review of computational cost is performed.

Keywords

Structural optimization Multi-material topology optimization Multi-joint topology optimization Manufacturability in topology optimization Joint design Tooling constraints 

Notes

Acknowledgments

This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and General Motors of Canada. Technical advice and direction were gratefully received from Derrick Chow, and Chandan Mozumder, at General Motors.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202.  https://doi.org/10.1007/BF01650949 CrossRefGoogle Scholar
  2. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRefGoogle Scholar
  3. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech (Ingenieur Arch) 69:635–654.  https://doi.org/10.1007/s004190050248 CrossRefzbMATHGoogle Scholar
  4. Bendsøe MP, Sigmund O (2004) Topology optimization theory, methods, and applications. Springer, Berlin, HeidelbergzbMATHGoogle Scholar
  5. Brewer JC, Lagace PA (1988) Quadratic stress criterion for initiation of delamination. J Compos Mater 22:1141–1155.  https://doi.org/10.1177/002199838802201205 CrossRefGoogle Scholar
  6. Chen Y, Lu J, Wei Y (2016) Topology optimization for manufacturability based on the visibility map. Comput Aided Des Appl 13:86–94.  https://doi.org/10.1080/16864360.2015.1059199 CrossRefGoogle Scholar
  7. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38.  https://doi.org/10.1007/s00158-013-0956-z MathSciNetCrossRefGoogle Scholar
  8. van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48:437–472.  https://doi.org/10.1007/s00158-013-0912-y MathSciNetCrossRefGoogle Scholar
  9. Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54:331.  https://doi.org/10.1115/1.1388075 CrossRefGoogle Scholar
  10. Guest JK, Zhu M (2012) Casting and milling restrictions in topology optimization via projection-based algorithms. In: Volume 3: 38th design automation conference, parts a and B. ASME, p 913Google Scholar
  11. Guo X, Zhang W, Zhong W (2014) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655.  https://doi.org/10.1016/j.cma.2013.10.003 MathSciNetCrossRefzbMATHGoogle Scholar
  12. Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43:811–825.  https://doi.org/10.1007/s00158-011-0625-z CrossRefzbMATHGoogle Scholar
  13. Kim IY, De Weck OL (2005) Variable chromosome length genetic algorithm for progressive refinement in topology optimization. Struct Multidiscip Optim 29:445–456.  https://doi.org/10.1007/s00158-004-0498-5 CrossRefGoogle Scholar
  14. Kim TS, Kim JE, Jeong JH, Kim YY (2004) Filtering technique to control member size in topology design optimization. KSME Int J 18:253–261.  https://doi.org/10.1007/BF03184735 CrossRefGoogle Scholar
  15. Li C, Kim IY (2015) Topology, size and shape optimization of an automotive cross car beam. Proc Inst Mech Eng Part D J Automob Eng 229:1361–1378.  https://doi.org/10.1177/0954407014561279 CrossRefGoogle Scholar
  16. Li C, Kim IY (2017) Multi-material topology optimization for automotive design problems. Proc Inst Mech Eng Part D J Automob Eng 232:095440701773790.  https://doi.org/10.1177/0954407017737901 CrossRefGoogle Scholar
  17. Li D, Kim IY (2018) Multi-material topology optimization for practical lightweight design. Struct Multidiscip Optim:1–14.  https://doi.org/10.1007/s00158-018-1953-z MathSciNetCrossRefGoogle Scholar
  18. Li Q, Chen W, Liu S, Tong L (2016) Structural topology optimization considering connectivity constraint. Struct Multidiscip Optim 54:971–984.  https://doi.org/10.1007/s00158-016-1459-5 MathSciNetCrossRefGoogle Scholar
  19. Liu S, Li Q, Chen W et al (2015) An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures. Front Mech Eng 10:126–137.  https://doi.org/10.1007/s11465-015-0340-3 CrossRefGoogle Scholar
  20. Liu J, Gaynor AT, Chen S et al (2018) Current and future trends in topology optimization for additive manufacturing. Struct Multidiscip Optim 57:2457–2483.  https://doi.org/10.1007/s00158-018-1994-3 CrossRefGoogle Scholar
  21. Martinsen K, Hu SJ, Carlson BE (2015) Joining of dissimilar materials. CIRP Ann 64:679–699.  https://doi.org/10.1016/j.cirp.2015.05.006 CrossRefGoogle Scholar
  22. Qian Z, Ananthasuresh GK (2004) Optimal embedding of rigid objects in the topology design of structures. Mech Based Des Struct Mach 32:165–193.  https://doi.org/10.1081/SME-120030555 CrossRefGoogle Scholar
  23. Roper S, Li D, Florea V, et al (2018) Multi-material topology optimization: a practical approach and application. In: SAE technical papers. pp 1–10Google Scholar
  24. Ryberg A-B, Nilsson L (2016) Spot weld reduction methods for automotive structures. Struct Multidiscip Optim 53:923–934.  https://doi.org/10.1007/s00158-015-1355-4 CrossRefGoogle Scholar
  25. Sanders ED, Pereira A, Aguiló MA, Paulino GH (2018) PolyMat: an efficient Matlab code for multi-material topology optimization. Struct Multidiscip Optim 58:2727–2759.  https://doi.org/10.1007/s00158-018-2094-0 MathSciNetCrossRefGoogle Scholar
  26. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055.  https://doi.org/10.1007/s00158-013-0978-6 MathSciNetCrossRefGoogle Scholar
  27. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75.  https://doi.org/10.1007/BF01214002 CrossRefGoogle Scholar
  28. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45:1037–1067.  https://doi.org/10.1016/S0022-5096(96)00114-7 MathSciNetCrossRefGoogle Scholar
  29. Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027.  https://doi.org/10.1002/nme.1259 CrossRefzbMATHGoogle Scholar
  30. Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22:116–124.  https://doi.org/10.1007/s001580100129 CrossRefGoogle Scholar
  31. Svanberg K (2007) MMA and GCMMA – two methods for nonlinear optimization. Kth 1:1–15Google Scholar
  32. Vatanabe SL, Lippi TN, Lima CR d et al (2016) Topology optimization with manufacturing constraints: a unified projection-based approach. Adv Eng Softw 100:97–112.  https://doi.org/10.1016/j.advengsoft.2016.07.002 CrossRefGoogle Scholar
  33. Wang X, Mei Y, Wang MY (2004) Level-set method for design of multi-phase elastic and thermoelastic materials. Int J Mech Mater Des 1:213–239.  https://doi.org/10.1007/s10999-005-0221-8 CrossRefGoogle Scholar
  34. Wang Y, Luo Z, Kang Z, Zhang N (2015) A multi-material level set-based topology and shape optimization method. Comput Methods Appl Mech Eng 283:1570–1586.  https://doi.org/10.1016/j.cma.2014.11.002 MathSciNetCrossRefzbMATHGoogle Scholar
  35. Woischwill C, Kim IY (2018) Multimaterial multijoint topology optimization. Int J Numer Methods Eng 115:1552–1579.  https://doi.org/10.1002/nme.5908 MathSciNetCrossRefGoogle Scholar
  36. Wong J, Ryan L, Kim IY (2018) Design optimization of aircraft landing gear assembly under dynamic loading. Struct Multidiscip Optim 57:1357–1375.  https://doi.org/10.1007/s00158-017-1817-y CrossRefGoogle Scholar
  37. Zhou Y, Saitou K (2018) Gradient-based multi-component topology optimization for stamped sheet metal assemblies (MTO-S). Struct Multidiscip Optim 58:83–94.  https://doi.org/10.1007/s00158-017-1878-y CrossRefGoogle Scholar
  38. Zhou Y, Nomura T, Saitou K (2018a) Multi-component topology and material orientation design of composite structures (MTO-C). Comput Methods Appl Mech Eng 342:438–457.  https://doi.org/10.1016/j.cma.2018.07.039 MathSciNetCrossRefGoogle Scholar
  39. Zhou Y, Nomura T, Saitou K (2018b) Multi-component topology optimization for powder bed additive manufacturing (MTO-A). Proc ASME 2018 Int des Eng tech Conf Comput Inf Eng Conf 1–13Google Scholar
  40. Zhu J, Zhang W, Beckers P et al (2008) Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Struct Multidiscip Optim 36:29–41.  https://doi.org/10.1007/s00158-007-0155-x MathSciNetCrossRefzbMATHGoogle Scholar
  41. Zhuang C, Xiong Z, Ding H (2010) Topology optimization of multi-material for the heat conduction problem based on the level set method. Eng Optim 42:811–831.  https://doi.org/10.1080/03052150903443780 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringQueen’s UniversityKingstonCanada
  2. 2.General Motors of Canada Company Canadian Technical CentreOshawaCanada

Personalised recommendations