Advertisement

A novel subdomain level set method for structural topology optimization and its application in graded cellular structure design

  • Hui LiuEmail author
  • Hongming Zong
  • Ye Tian
  • Qingping Ma
  • Michael Yu WangEmail author
Research Paper

Abstract

A novel subdomain structural topology optimization method is proposed for the minimum compliance problem based on the level sets with the parameterization of radial basis function (RBF). In this method, the level set function evolves on each subdomain separately and independently according to the requirements of objective functions and additional constraints. This makes the parameterization in the proposed subdomain method much faster and more cost-effective than that in the classical global method, as well as the evolution of the level set function since it can be achieved on each subdomain in parallel. In addition, the microstructures on arbitrary two adjacent subdomains can be connected perfectly, without any mismatch around the interfaces of the microstructures. Several typical examples are conducted to verify the correctness and effectiveness of the developed subdomain method. The effects of some factors on the optimized results are also investigated in detail, such as the RBF types, the connectivity types of microstructures, and the size of subdomain division. Without scale separation assumption, several layered graded cellular structures are successfully designed by employing the proposed method under the condition of corresponding repetition constraints. To improve the computational efficiency, a multi-node extended multiscale finite element method (EMsFEM) is used to solve the structural static equilibrium equation for the three-dimensional layered structure optimization problems. Furthermore, a MATLAB code is also provided in the Appendix for readers to reproduce the results of the two-dimensional problems in this work.

Keywords

Subdomain level set method Topology optimization Layered graded structure Cellular graded structure Multiscale finite element method (MsFEM) 

Notes

Funding information

This work is supported by the Hong Kong Scholars Program (XJ2016024) and the Fundamental Research Funds for the Central Universities (2042018kf0016).

Compliance with ethical standards

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “A novel subdomain level set method for structural topology optimization”.

Supplementary material

158_2019_2318_MOESM1_ESM.m (8 kb)
ESM 1 (M 8 kb)
158_2019_2318_MOESM2_ESM.m (9 kb)
ESM 2 (M 8 kb)

References

  1. Alexandersen J, Lazarov BS (2015a) Tailoring macroscale response of mechanical and heat transfer systems by topology optimization of microstructural details. In: Eng Appl Sci Optim Springer, pp 267–288. doi: https://doi.org/10.1007/978-3-319-18320-6_15
  2. Alexandersen J, Lazarov BS (2015b) Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput Methods Appl Mech Eng 290:156–182.  https://doi.org/10.1016/j.cma.2015.02.028 MathSciNetCrossRefzbMATHGoogle Scholar
  3. Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393.  https://doi.org/10.1016/j.jcp.2003.09.032 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2010) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16.  https://doi.org/10.1007/s00158-010-0594-7 CrossRefzbMATHGoogle Scholar
  5. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRefzbMATHGoogle Scholar
  7. Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM: Control Optimisation and Calculus of Variations 9:19–48MathSciNetzbMATHGoogle Scholar
  8. Challis VJ (2010) A discrete level-set topology optimization code written in Matlab. Struct Multidiscip Optim 41:453–464.  https://doi.org/10.1007/s00158-009-0430-0 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Chen W, Tong L, Liu S (2017) Concurrent topology design of structure and material using a two-scale topology optimization. Comput Struct 178:119–128.  https://doi.org/10.1016/j.compstruc.2016.10.013 CrossRefGoogle Scholar
  10. Choi JS, Yamada T, Izui K, Nishiwaki S, Yoo J (2011) Topology optimization using a reaction–diffusion equation. Comput Methods Appl Mech Eng 200:2407–2420.  https://doi.org/10.1016/j.cma.2011.04.013 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Clausen A, Wang F, Jensen JS, Sigmund O, Lewis JA (2015) Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv Mater 27:5523–5527.  https://doi.org/10.1002/adma.201502485 CrossRefGoogle Scholar
  12. Da DC, Cui XY, Long K, Li GY (2017) Concurrent topological design of composite structures and the underlying multi-phase materials. Comput Struct 179:1–14.  https://doi.org/10.1016/j.compstruc.2016.10.006 CrossRefGoogle Scholar
  13. Deaton JD, Grandhi RV (2013) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38.  https://doi.org/10.1007/s00158-013-0956-z MathSciNetCrossRefGoogle Scholar
  14. Efendiev Y, Hou TY (2009) Multiscale finite element methods: theory and applications. SpringerGoogle Scholar
  15. Groen JP, Sigmund O (2018) Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int J Numer Methods Eng 113:1148–1163.  https://doi.org/10.1002/nme.5575 MathSciNetCrossRefGoogle Scholar
  16. Guo X, Cheng G-D (2010) Recent development in structural design and optimization. Acta Mech Sinica 26:807–823.  https://doi.org/10.1007/s10409-010-0395-7 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81:081009.  https://doi.org/10.1115/1.4027609 CrossRefGoogle Scholar
  18. Ho HS, Lui BFY, Wang MY (2011) Parametric structural optimization with radial basis functions and partition of unity method. Optim Methods Software 26:533–553.  https://doi.org/10.1080/10556788.2010.546399 MathSciNetCrossRefzbMATHGoogle Scholar
  19. Ho HS, Wang MY, Zhou M (2012) Parametric structural optimization with dynamic knot RBFs and partition of unity method. Struct Multidiscip Optim 47:353–365.  https://doi.org/10.1007/s00158-012-0848-7 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Kansa EJ, Power H, Fasshauer GE, Ling L (2004) A volumetric integral radial basis function method for time-dependent partial differential equations. I. Formulation. Eng Anal Bound Elem 28:1191–1206.  https://doi.org/10.1016/j.enganabound.2004.01.004 CrossRefzbMATHGoogle Scholar
  21. Kato J, Yachi D, Kyoya T, Terada K (2018) Micro-macro concurrent topology optimization for nonlinear solids with a decoupling multiscale analysis. Int J Numer Methods Eng 113:1189–1213.  https://doi.org/10.1002/nme.5571 MathSciNetCrossRefGoogle Scholar
  22. Lazarov BS (2013) Topology optimization using multiscale finite element method for high-contrast media. In: 9th International Conference on Large-Scale Scientific Computing. Springer, Sozopol, Bulgaria, pp 339–346.  https://doi.org/10.1007/978-3-662-43880-0 Google Scholar
  23. Li H, Gao L, Xiao M, Gao J, Chen H, Zhang F, Meng W (2016a) Topological shape optimization design of continuum structures via an effective level set method. Cogent Eng 3 doi: https://doi.org/10.1080/23311916.2016.1250430
  24. Li H, Li P, Gao L, Zhang L, Wu T (2015) A level set method for topological shape optimization of 3D structures with extrusion constraints. Comput Methods Appl Mech Eng 283:615–635.  https://doi.org/10.1016/j.cma.2014.10.006 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Li H, Luo Z, Gao L, Qin Q (2018a) Topology optimization for concurrent design of structures with multi-patch microstructures by level sets. Comput Methods Appl Mech Eng 331:536–561.  https://doi.org/10.1016/j.cma.2017.11.033 MathSciNetCrossRefGoogle Scholar
  26. Li H, Luo Z, Gao L, Walker P (2018b) Topology optimization for functionally graded cellular composites with metamaterials by level sets. Comput Methods Appl Mech Eng 328:340–364.  https://doi.org/10.1016/j.cma.2017.09.008 MathSciNetCrossRefGoogle Scholar
  27. Li H, Luo Z, Zhang N, Gao L, Brown T (2016b) Integrated design of cellular composites using a level-set topology optimization method. Comput Methods Appl Mech Eng 309:453–475.  https://doi.org/10.1016/j.cma.2016.06.012 MathSciNetCrossRefGoogle Scholar
  28. Liu C, Du Z, Zhang W, Zhu Y, Guo X (2017) Additive manufacturing-oriented design of graded lattice structures through explicit topology. optimization. J Appl Mech 84:081008–081001–081012.  https://doi.org/10.1115/1.4036941 CrossRefGoogle Scholar
  29. Liu H, Wang Y, Zong H, Wang MY (2018) Efficient structure topology optimization by using the multiscale finite element method. Struct Multidiscip Optim 58:1411–1430.  https://doi.org/10.1007/s00158-018-1972-9 MathSciNetCrossRefGoogle Scholar
  30. Liu H, Zhang HW (2013) A uniform multiscale method for 3D static and dynamic analyses of heterogeneous materials. Comput Mater Sci 79:159–173.  https://doi.org/10.1016/j.commatsci.2013.06.006 CrossRefGoogle Scholar
  31. Luo Z, Tong L, Luo J, Wei P, Wang MY (2009) Design of piezoelectric actuators using a multiphase level set method of piecewise constants. J Comput Phys 228:2643–2659.  https://doi.org/10.1016/j.jcp.2008.12.019 MathSciNetCrossRefzbMATHGoogle Scholar
  32. Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227:680–705.  https://doi.org/10.1016/j.jcp.2007.08.011 MathSciNetCrossRefzbMATHGoogle Scholar
  33. Luo Z, Wang MY, Wang S, Wei P (2008) A level set-based parameterization method for structural shape and topology optimization. Int J Numer Methods Eng 76:1–26.  https://doi.org/10.1002/nme.2092 MathSciNetCrossRefzbMATHGoogle Scholar
  34. Meza LR, Das S, Greer JR (2014) Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345:1322–1326CrossRefGoogle Scholar
  35. Morse BS, Yoo TS, Chen DT, Rheingans P, Subramanian KR (2001) Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. International conference on shape modeling and applications 15:89–98Google Scholar
  36. Nakshatrala PB, Tortorelli DA, Nakshatrala KB (2013) Nonlinear structural design using multiscale topology optimization. Part I: static formulation. Comput Methods Appl Mech Eng 261-262:167–176.  https://doi.org/10.1016/j.cma.2012.12.018 MathSciNetCrossRefzbMATHGoogle Scholar
  37. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New YorkCrossRefzbMATHGoogle Scholar
  38. Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer,Google Scholar
  39. Otomori M, Yamada T, Izui K, Nishiwaki S (2014) Matlab code for a level set-based topology optimization method using a reaction diffusion equation. Struct Multidiscip Optim 51:1159–1172.  https://doi.org/10.1007/s00158-014-1190-z MathSciNetCrossRefGoogle Scholar
  40. Radman A, Huang X, Xie YM (2012) Topology optimization of functionally graded cellular materials. J Mater Sci 48:1503–1510.  https://doi.org/10.1007/s10853-012-6905-1 CrossRefGoogle Scholar
  41. Rojas-Labanda S, Stolpe M (2015) Automatic penalty continuation in structural topology optimization. Struct Multidiscip Optim 52:1205–1221.  https://doi.org/10.1007/s00158-015-1277-1 MathSciNetCrossRefGoogle Scholar
  42. Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Structural Optimization 4:250–252CrossRefGoogle Scholar
  43. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University PressGoogle Scholar
  44. Shojaee S, Mohammadian M (2011) Piecewise constant level set method for structural topology optimization with MBO type of projection. Struct Multidiscip Optim 44:455–469.  https://doi.org/10.1007/s00158-011-0646-7 MathSciNetCrossRefzbMATHGoogle Scholar
  45. Sigmund O, Aage N, Andreassen E (2016) On the (non-)optimality of Michell structures. Struct Multidiscip Optim 54:361–373.  https://doi.org/10.1007/s00158-016-1420-7 MathSciNetCrossRefGoogle Scholar
  46. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055.  https://doi.org/10.1007/s00158-013-0978-6 MathSciNetCrossRefGoogle Scholar
  47. Silva ECN, Walters MC, Paulino GH (2006) Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials. J Mater Sci 41:6991–7004.  https://doi.org/10.1007/s10853-006-0232-3 CrossRefGoogle Scholar
  48. Sivapuram R, Dunning PD, Kim HA (2016) Simultaneous material and structural optimization by multiscale topology optimization. Struct Multidiscip Optim 54:1267–1281.  https://doi.org/10.1007/s00158-016-1519-x MathSciNetCrossRefGoogle Scholar
  49. Stolpe M, Svanberg K (2001) On the trajectories of penalization methods for topology optimization. Struct Multidiscip Optim 21:128–139CrossRefGoogle Scholar
  50. Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefzbMATHGoogle Scholar
  51. van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48:437–472.  https://doi.org/10.1007/s00158-013-0912-y MathSciNetCrossRefGoogle Scholar
  52. Vicente WM, Zuo ZH, Pavanello R, Calixto TKL, Picelli R, Xie YM (2016) Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures. Comput Methods Appl Mech Eng 301:116–136.  https://doi.org/10.1016/j.cma.2015.12.012 MathSciNetCrossRefGoogle Scholar
  53. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetCrossRefzbMATHGoogle Scholar
  54. Wang MY, Zhou S (2004) Phase field: a Variational method for structural topology optimization. Comput Model Eng Sci 6:547–566MathSciNetzbMATHGoogle Scholar
  55. Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65:2060–2090.  https://doi.org/10.1002/nme.1536 MathSciNetCrossRefzbMATHGoogle Scholar
  56. Wang SY, Lim KM, Khoo BC, Wang MY (2007) An extended level set method for shape and topology optimization. J Comput Phys 221:395–421.  https://doi.org/10.1016/j.jcp.2006.06.029 MathSciNetCrossRefzbMATHGoogle Scholar
  57. Wang Y, Chen F, Wang MY (2017a) Concurrent design with connectable graded microstructures. Comput Methods Appl Mech Eng 317:84–101.  https://doi.org/10.1016/j.cma.2016.12.007 MathSciNetCrossRefGoogle Scholar
  58. Wang Y, Wang MY, Chen F (2016) Structure-material integrated design by level sets. Struct Multidiscip Optim 54:1145–1156.  https://doi.org/10.1007/s00158-016-1430-5 MathSciNetCrossRefGoogle Scholar
  59. Wang Y, Xu H, Pasini D (2017b) Multiscale isogeometric topology optimization for lattice materials. Comput Methods Appl Mech Eng 316:568–585.  https://doi.org/10.1016/j.cma.2016.08.015 MathSciNetCrossRefGoogle Scholar
  60. Wei P, Li Z, Li X, Wang MY (2018) An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions. Struct Multidiscip Optim 58:831–849.  https://doi.org/10.1007/s00158-018-1904-8 MathSciNetCrossRefGoogle Scholar
  61. Wei P, Wang MY (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Methods Eng 78:379–402.  https://doi.org/10.1002/nme.2478 MathSciNetCrossRefzbMATHGoogle Scholar
  62. Xia L, Breitkopf P (2014a) Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542.  https://doi.org/10.1016/j.cma.2014.05.022 CrossRefzbMATHGoogle Scholar
  63. Xia L, Breitkopf P (2014b) A reduced multiscale model for nonlinear structural topology optimization. Comput Methods Appl Mech Eng 280:117–134.  https://doi.org/10.1016/j.cma.2014.07.024 MathSciNetCrossRefzbMATHGoogle Scholar
  64. Xia L, Breitkopf P (2015) Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput Methods Appl Mech Eng 286:147–167.  https://doi.org/10.1016/j.cma.2014.12.018 MathSciNetCrossRefzbMATHGoogle Scholar
  65. Xia L, Breitkopf P (2016) Recent advances on topology optimization of multiscale nonlinear structures. Arch Comput Methods Eng 24:227–249.  https://doi.org/10.1007/s11831-016-9170-7 MathSciNetCrossRefzbMATHGoogle Scholar
  66. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896CrossRefGoogle Scholar
  67. Yang XY, Xei YM, Steven GP, Querin OM (1999) Bidirectional evolutionary method for stiffness. Optimization. AIAA J 37:1483–1488.  https://doi.org/10.2514/2.626 CrossRefGoogle Scholar
  68. Zhang HW, Liu H, Wu JK (2013) A uniform multiscale method for 2D static and dynamic analyses of heterogeneous materials. Int J Numer Methods Eng 93:714–746.  https://doi.org/10.1002/nme.4404 MathSciNetCrossRefzbMATHGoogle Scholar
  69. Zhang W, Li D, Zhou J, Du Z, Li B, Guo X (2018) A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Eng 334:381–413.  https://doi.org/10.1016/j.cma.2018.01.050 MathSciNetCrossRefGoogle Scholar
  70. Zhang W, Sun S (2006) Scale-related topology optimization of cellular materials and structures. Int J Numer Methods Eng 68:993–1011.  https://doi.org/10.1002/nme.1743 CrossRefzbMATHGoogle Scholar
  71. Zheng X et al (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344:1373–1377CrossRefGoogle Scholar
  72. Zhou M, Rozvany GIN (1991) The COC algorithm, part II- topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336CrossRefGoogle Scholar
  73. Zhu S, Wu Q, Liu C (2011) Shape and topology optimization for elliptic boundary value problems using a piecewise constant level set method. Appl Numer Math 61:752–767.  https://doi.org/10.1016/j.apnum.2011.01.005 MathSciNetCrossRefzbMATHGoogle Scholar
  74. Zhu Y, Li S, Du Z, Liu C, Guo X, Zhang W (2019) A novel asymptotic-analysis-based homogenisation approach towards fast design of infill graded microstructures. J Mech Physics Solids 124:612–633.  https://doi.org/10.1016/j.jmps.2018.11.008 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanics Engineering, School of Civil EngineeringWuhan UniversityWuhanPeople’s Republic of China
  2. 2.Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyClear Water BayHong Kong

Personalised recommendations