Advertisement

Structural and Multidisciplinary Optimization

, Volume 60, Issue 6, pp 2281–2293 | Cite as

Suppression of vortex-induced vibration of a circular cylinder at subcritical Reynolds numbers using shape optimization

  • Wengang Chen
  • Xintao Li
  • Weiwei ZhangEmail author
Research Paper
  • 137 Downloads

Abstract

In this paper, shape optimization is employed to improve the stability of the flow past an elastically mounted circular cylinder at subcritical Reynolds numbers (Re < 47). As a key criterion for the stability of fluid-structure interaction system, dynamic derivative is adopted as the object of the optimization. The parametrization of the cross section is based on the class-shape function transformation technique. Then, shape optimization is conducted using the differential evolution algorithm. To improve the optimization efficiency, a surrogate model is constructed to replace the direct numerical simulation in the optimization process. Research shows that through the shape optimization, vortex-induced vibration is significantly suppressed and the stability of the fluid-structure interaction system is remarkably improved. In addition, the critical Reynolds number of the optimized cross section is also improved compared with that of the circular cylinder.

Keywords

Shape optimization Vortex-induced vibration Fluid-structure interaction Stability 

Notes

Funding information

This paper is mainly supported by the National Science Fund for Excellent Young Scholars (no. 11622220), 111 project of China (no. B17037), and National Natural Science Foundation of China (no. 11572252).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bearman PW (2011) Circular cylinder wakes and vortex-induced vibrations [J]. J Fluids Struct 27(5):648–658CrossRefGoogle Scholar
  2. Boer AD, Schoot MSVD, Bijl H (2007) Mesh deformation based on radial basis function interpolation[J]. Comput Struct 85(11):784–795CrossRefGoogle Scholar
  3. Brenda M K (2007) A universal parametric geometry representation method—‘CST.’[C]. 45th AIAA Aerospace Sciences Meeting and Exhibit.: 8Google Scholar
  4. Brunton SL, Rowley CW, Williams DR (2013) Reduced-order unsteady aerodynamic models at low Reynolds numbers[J]. J Fluid Mech 724(2):203–233zbMATHCrossRefGoogle Scholar
  5. Chen WL, Xin DB, Xu F et al (2013) Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control[J]. J Fluids Struct 42(4):25–39CrossRefGoogle Scholar
  6. Cossu C, Morino L (2000) On the instability of a spring-mounted circular cylinder in a viscous flow at low Reynolds numbers[J]. J Fluids Struct 14(2):183–196CrossRefGoogle Scholar
  7. Da Ronch A, Vallespin D, Ghoreyshi M et al (2010) Computation of dynamic derivatives using CFD[C]. In: 28th Applied Aerodynamics Conference, AIAA-2010-4817. Chicago, IllinoisGoogle Scholar
  8. Da Ronch A, Vallespin D, Ghoreyshi M et al (2012) Evaluation of dynamic derivatives using computational fluid dynamics[J]. AIAA J 50(2):470–484CrossRefGoogle Scholar
  9. Dahan JA, Morgans AS, Lardeau S (2012) Feedback control for form-drag reduction on a bluff body with a blunt trailing edge[J]. J Fluid Mech 704(2):360–387zbMATHCrossRefGoogle Scholar
  10. Du L, Sun X (2015) Suppression of vortex-induced vibration using the rotary oscillation of a cylinder[J]. Phys Fluids 27(2):195–2023CrossRefGoogle Scholar
  11. Elham A, van Tooren MJL (2016) Coupled adjoint aerostructural wing optimization using quasi-three-dimensional aerodynamic analysis[J]. Struct Multidiscip Optim 54(4):889–906MathSciNetCrossRefGoogle Scholar
  12. Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design[J]. Flow Turbul Combust 65(3–4):393–415zbMATHCrossRefGoogle Scholar
  13. Giunta A, Watson L (1998) A comparison of approximation modeling techniques-polynomial versus interpolating models[C]. In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, p 4758Google Scholar
  14. Han ZH, Görtz S (2012) Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA J 50(9):1885–1896CrossRefGoogle Scholar
  15. Han ZH, Zhang KS (2012) Surrogate-based optimization[M]//Real-world applications of genetic algorithms. Intech OpenGoogle Scholar
  16. Harpham C, Dawson CW (2006) The effect of different basis functions on a radial basis function network for time series prediction: a comparative study[J]. Neurocomputing 69(16):2161–2170CrossRefGoogle Scholar
  17. He S, Jonsson E, Mader C A, et al. Aerodynamic shape optimization with time spectral flutter Adjoint[C]. AIAA Scitech 2019 Forum 2019: 0697Google Scholar
  18. Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliab Eng Syst Saf 81(1):23–69CrossRefGoogle Scholar
  19. Hicks RM, Henne PA (1978) Wing design by numerical optimization[J]. J Aircr 15(7):407–412CrossRefGoogle Scholar
  20. Hicks R M, Murman E M, Vanderplaats G N. An assessment of airfoil design by numerical optimization[J]. NASA Report, 1974Google Scholar
  21. Holland J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[J]. Ann Arbor, 1992, 6(2):126–137Google Scholar
  22. Huera-Huarte FJ (2017) Suppression of vortex-induced vibration in low mass-damping circular cylinders using wire meshes[J]. Mar Struct 55:200–213CrossRefGoogle Scholar
  23. Illingworth SJ, Morgans AS, Rowley CW (2012) Feedback control of cavity flow oscillations using simple linear models[J]. J Fluid Mech 709(4):223–248MathSciNetzbMATHCrossRefGoogle Scholar
  24. Jameson A (1988) Aerodynamic design via control theory[J]. J Sci Comput 3(3):233–260MathSciNetzbMATHCrossRefGoogle Scholar
  25. Jameson A. Optimum aerodynamic design using CFD and control theory[C]. 12th Computational Fluid Dynamics Conference. 1995: 1729Google Scholar
  26. Jameson A, Reuther J (1994) Control theory based airfoil design using the Euler equations[C]. In: 5th Symposium on Multidisciplinary Analysis and Optimization, p 4272Google Scholar
  27. Jasa JP, Hwang JT, Martins JRRA (2018) Open-source coupled aerostructural optimization using python[J]. Struct Multidiscip Optim 57(4):1815–1827CrossRefGoogle Scholar
  28. Jeong S, Murayama M, Yamamoto K (2005) Efficient optimization design method using kriging model[J]. J Aircr 42(2):413–420CrossRefGoogle Scholar
  29. Jiang Y. Numerical solution of Navier–Stokes equations on generalized mesh and its applications[J], NWPU, Xi’an China (Ph D thesis), 2013Google Scholar
  30. Kaminsky AL, Ekici K (2016) Sensitivity and stability derivative analysis using an efficient adjoint harmonic balance technique[C]. In: 54th AIAA Aerospace Sciences Meeting, p 0808Google Scholar
  31. Kou J, Zhang W, Liu Y, et al (2017) The lowest Reynolds number of vortex-induced vibrations[J]. Physics of Fluids 29(4): 041–701CrossRefGoogle Scholar
  32. Krige DG (1951) A statistical approach to some basic mine valuation problems on the witwatersrand[J]. J South Afr Inst Min Metall 52(6):119–139Google Scholar
  33. Kulfan B, Bussoletti J (2006) “Fundamental” parameteric geometry representations for aircraft component shapes[C]. In: 11th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 6948Google Scholar
  34. Li X, Zhang W, Jiang Y, Ye Z (2015) Stability analysis of flow past an elastically-suspended circular cylinder. Chin J Theor Appl Mech 47(5):874Google Scholar
  35. Li X, Liu Y, Kou J et al (2017) Reduced-order thrust modeling for an efficiently flapping airfoil using system identification method[J]. J Fluids Struct 69:137–153CrossRefGoogle Scholar
  36. Li X, Lyu Z, Kou J, et al (2019) Mode competition in galloping of a square cylinder at low Reynolds number[J]. J Fluid Mech 867:516–555MathSciNetzbMATHCrossRefGoogle Scholar
  37. Liu X, Liu W, Zhao Y (2015) Unsteady vibration aerodynamic modeling and evaluation of dynamic derivatives using computational fluid dynamics[J]. Math Probl EngGoogle Scholar
  38. Lucia D, Beran PS (2004) Reduced-order model development using proper orthogonal decomposition and volterra theory[J]. AIAA J 42(6):1181–1190CrossRefGoogle Scholar
  39. Mittal S, Singh S (2005) Vortex-induced vibrations at subcritical Re[J]. J Fluid Mech 534(534):185–194zbMATHCrossRefGoogle Scholar
  40. Nejat A, Mirzabeygi P, Panahi MS (2014) Airfoil shape optimization using improved multiobjective territorial particle swarm algorithm with the objective of improving stall characteristics[J]. Struct Multidiscip Optim 49(6):953–967MathSciNetCrossRefGoogle Scholar
  41. Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks[J]. Neural Comput 3(2):246–257CrossRefGoogle Scholar
  42. Peter JEV, Dwight RP (2010) Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches [J]. Comput Fluids 39(3):373–391MathSciNetzbMATHCrossRefGoogle Scholar
  43. Pironneau O (1984) Optimal shape design for elliptic systems[M]. Springer Berlin HeidelbergGoogle Scholar
  44. Schmit LA, Farshi B (1974) Some approximation concepts for structural synthesis[J]. AIAA J 12(5):692–699CrossRefGoogle Scholar
  45. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. J Glob Optim 11(4):341–359MathSciNetzbMATHCrossRefGoogle Scholar
  46. Vavalle A, Qin N (2007) Iterative response surface based optimization scheme for transonic airfoil design[J]. J Aircr 44(2):365–376CrossRefGoogle Scholar
  47. Vt SE, Shin YC (1994) Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems[J]. IEEE Trans Neural Netw 5(4):594–603CrossRefGoogle Scholar
  48. Williamson CHK (1996) Vortex dynamics in the cylinder wake[J]. Annu Rev Fluid Mech 28(1):477–539MathSciNetCrossRefGoogle Scholar
  49. Williamson CHK, Govardhan R (2004) Vortex-induced vibrations[J]. Annurevfluid Mech 36(1):413–455MathSciNetzbMATHGoogle Scholar
  50. Wu X, Zhang W, Song S (2018) Robust aerodynamic shape design based on an adaptive stochastic optimization framework[J]. Struct Multidiscip Optim 57(2):639–651MathSciNetCrossRefGoogle Scholar
  51. Wu X, Zhang W, Peng X, et al (2019) Benchmark aerodynamic shape optimization with the POD-based CST airfoil parametric method[J]. Aerosp Sci Technol 84:632–640.CrossRefGoogle Scholar
  52. Yao W, Jaiman R K (2017) Model reduction and mechanism for the vortex-induced vibrations of bluff bodies[J]. J Fluid Mech 827:357–393MathSciNetzbMATHCrossRefGoogle Scholar
  53. Yao W, Jaiman R K (2019) Stability analysis of the wake-induced vibration of tandem circular and square cylinders[J]. Nonlinear Dyn 95(1):13–28CrossRefGoogle Scholar
  54. Zhang W, Ye Z. Control law design for transonic aeroservoelasticity[J]. Aerosp Sci Technol, 2007a, 11(2–3): 136–145zbMATHCrossRefGoogle Scholar
  55. Zhang W, Ye Z (2007b) Reduced-order-model-based flutter analysis at high angle of attack[J]. J Aircr 44(6):2086–2089MathSciNetCrossRefGoogle Scholar
  56. Zhang W, Jiang Y, Ye Z (2007) Two better loosely coupled solution algorithms of CFD based aeroelastic simulation[J]. Eng Appl Comp Fluid Mech 1(4):253–262Google Scholar
  57. Zhang H, Fan B C, Li H Z (2011) Suppression of vortex-induced vibration of a circular cylinder by Lorentz force[J]. Science China (Physics,Mechanics & Astronomy) 54(12):2248–2259Google Scholar
  58. Zhang W, Li X, Ye Z et al (2015) Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers[J]. J Fluid Mech 783:72–102MathSciNetzbMATHCrossRefGoogle Scholar
  59. Zhang W, Yiming G, Yilang LIU (2018) Abnormal changes of dynamic derivatives at low reduced frequencies[J]. Chin J Aeronaut 31(7):1428–1436CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Key Laboratory Science and Technology on Aerodynamic Design and ResearchXi’anChina
  2. 2.School of AeronauticsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations