Advertisement

Topology optimization of acoustic mechanical interaction problems: a comparative review

  • Cetin B. DilgenEmail author
  • Sumer B. Dilgen
  • Niels Aage
  • Jakob S. Jensen
Review Article
  • 192 Downloads

Abstract

The pursuit for design improvements by geometry modifications can easily become prohibitive using a trial and error process. This holds especially when dealing with multi-physics problems—such as acoustic-structure interaction—where it is difficult to realize design improvements intuitively due to the complexity of the coupled physics. Compared to classical shape optimization, where a near optimal shape has to be supplied as an initial guess, topology optimization allows for innovative designs through a completely free material distribution, such that the topology can change during the optimization process. The goal of this article is to provide a comprehensive critical review of the proposed strategies for topology optimization of coupled acoustic-structure interaction problems. The work includes a comparison of topology optimization formulations with density, level set, and evolutionary-based methods and discusses the corresponding strengths and weaknesses through the considered application examples. The review concludes with recommendations for future research directions.

Keywords

Vibro-acoustics Topology optimization Density methods Level set methods 

Notes

Acknowledgements

The authors would like to acknowledge the members of the DTU TopOpt group for numerous discussions and good advises on different aspects of performing multiphysical structural optimization.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84–86.  https://doi.org/10.1038/nature23911, letterGoogle Scholar
  2. Akl W, El-Sabbagh A, Al-Mitani K, Baz A (2009) Topology optimization of a plate coupled with acoustic cavity. Int J Solids Struct 46(10):2060–2074.  https://doi.org/10.1016/j.ijsolstr.2008.05.034. http://www.sciencedirect.com/science/article/pii/S0020768308002096, special Issue in Honor of Professor Liviu LibrescuzbMATHGoogle Scholar
  3. Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Transf 100:876–891.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.013 Google Scholar
  4. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202.  https://doi.org/10.1007/BF01650949 Google Scholar
  5. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71 (2):197–224.  https://doi.org/10.1016/0045-7825(88)90086-2. http://linkinghub.elsevier.com/retrieve/pii/0045782588900862 MathSciNetzbMATHGoogle Scholar
  6. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158MathSciNetzbMATHGoogle Scholar
  7. Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26-27):3443–3459.  https://doi.org/10.1016/S0045-7825(00)00278-4 zbMATHGoogle Scholar
  8. Burman E, Claus S, Hansbo P, Larson M G, Massing A (2014) CutFEM: discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering (December 2014), pp 472–501,  https://doi.org/10.1002/nme. arXiv:1201.4903
  9. Chen N, Yu D, Xia B, Liu J, Ma Z (2017) Microstructural topology optimization of structural-acoustic coupled systems for minimizing sound pressure level. Struct Multidiscip Optim 56(6):1259–1270.  https://doi.org/10.1007/s00158-017-1718-0 MathSciNetGoogle Scholar
  10. Choi K, Kim N (2005) Structural sensitivity analysis and optimization 1: linear systems. Springer, New YorkGoogle Scholar
  11. Christiansen RE, Sigmund O, Fernandez-Grande E (2015) Experimental validation of a topology optimized acoustic cavity. J Acoust Soc Am 138(6):3470–3474.  https://doi.org/10.1121/1.4936905. http://scitation.aip.org/content/asa/journal/jasa/138/6/10.1121/1.4936905 Google Scholar
  12. Desai J, Faure A, Michailidis G, Parry G, Estevez R (2018) Topology optimization in acoustics and elasto-acoustics via a level-set method. J Sound Vib 420:73–103.  https://doi.org/10.1016/j.jsv.2018.01.032. https://linkinghub.elsevier.com/retrieve/pii/S0022460X18300403 Google Scholar
  13. Dilgen SB, Dilgen CB, Fuhrman DR, Sigmund O, Lazarov BS (2018) Density based topology optimization of turbulent flow heat transfer systems. Struct Multidiscip Optim 57 (5):1905–1918.  https://doi.org/10.1007/s00158-018-1967-6 MathSciNetGoogle Scholar
  14. Du J, Olhoff N (2010) Topological design of vibrating structures with respect to optimum sound pressure characteristics in a surrounding acoustic medium. Struct Multidiscip Optim 42(1):43–54.  https://doi.org/10.1007/s00158-009-0477-y MathSciNetzbMATHGoogle Scholar
  15. Dühring MB, Jensen J S, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317(3-5):557–575.  https://doi.org/10.1016/j.jsv.2008.03.042 Google Scholar
  16. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45):3768–3782.  https://doi.org/10.1016/j.cma.2008.02.036 MathSciNetzbMATHGoogle Scholar
  17. Gerstenberger A, Wall WA (2008) An eXtended Finite Element Method/Lagrange multiplier based approach for fluid–structure interaction. Comput Methods Appl Mech Eng 197(19):1699–1714.  https://doi.org/10.1016/j.cma.2007.07.002 MathSciNetzbMATHGoogle Scholar
  18. Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254.  https://doi.org/10.1002/nme.1064 MathSciNetzbMATHGoogle Scholar
  19. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33-35):3523–3540.  https://doi.org/10.1016/j.cma.2003.12.041. http://linkinghub.elsevier.com/retrieve/pii/S0045782504000507 MathSciNetzbMATHGoogle Scholar
  20. Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049.  https://doi.org/10.1016/j.finel.2007.06.006 Google Scholar
  21. Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Optim Appl 42(2):393–401.  https://doi.org/10.1007/s00466-008-0312-0 MathSciNetzbMATHGoogle Scholar
  22. Huang X, Xie YM (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41(5):671–683.  https://doi.org/10.1007/s00158-010-0487-9 Google Scholar
  23. Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Compos Struct 88(5-6):357–364.  https://doi.org/10.1016/j.compstruc.2009.11.011 Google Scholar
  24. Isakari H, Kondo T, Takahashi T, Matsumoto T (2017) A level-set-based topology optimisation for acoustic–elastic coupled problems with a fast bem–fem solver. Comput Methods Appl Mech Eng 315:501–521.  https://doi.org/10.1016/j.cma.2016.11.006. http://www.sciencedirect.com/science/article/pii/S0045782516305187 MathSciNetGoogle Scholar
  25. Jensen JS (2007) Topology optimization of dynamics problems with padé approximants. Int J Numer Methods Eng 72(13):1605–1630.  https://doi.org/10.1002/nme.2065 zbMATHGoogle Scholar
  26. Jensen JS, Sigmund O (2011) Topology optimization for nano-photonics. Laser Photonics Rev 5(2):308–321.  https://doi.org/10.1002/lpor.201000014 Google Scholar
  27. Kook J, Jensen JS (2017) Topology optimization of periodic microstructures for enhanced loss factor using acoustic–structure interaction. Int J Solids Struc 122–123:59–68.  https://doi.org/10.1016/j.ijsolstr.2017.06.001
  28. Larsen U D, Sigmund O, Bouwstra S (1997) Design and fabrication of compliant micromechanisms and structures with negative poisson’s ratio. IEEE J Microelectromech Syst 6(2):99–106.  https://doi.org/10.1109/84.585787 Google Scholar
  29. Lazarov BS, Sigmund O (2011) Filters in topology optimization based on helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781.  https://doi.org/10.1002/nme.3072 MathSciNetzbMATHGoogle Scholar
  30. Lee JS, Kang YJ, Kim YY (2012) Unified multiphase modeling for evolving, acoustically coupled systems consisting of acoustic, elastic, poroelastic media and septa. J Sound Vib 331(25):5518–5536.  https://doi.org/10.1016/j.jsv.2012.07.027 Google Scholar
  31. Lee JS, Goransson P, Kim YY (2015) Topology optimization for three-phase materials distribution in a dissipative expansion chamber by unified multiphase modeling approach. Comput Methods Appl Mech Eng 287:191–211.  https://doi.org/10.1016/j.cma.2015.01.011 MathSciNetzbMATHGoogle Scholar
  32. Liu Z, Korvink J, Huang R (2005) Structure topology optimization: fully coupled level set method via femlab. Struct Multidiscip Optim 29(6):407–417.  https://doi.org/10.1007/s00158-004-0503-z MathSciNetzbMATHGoogle Scholar
  33. Miyata K, Noguchi Y, Yamada T, Izui K, Nishiwaki S (2018) Optimum design of a multi-functional acoustic metasurface using topology optimization based on zwicker’s loudness model. Comput Methods Appl Mech Eng 331:116–137.  https://doi.org/10.1016/j.cma.2017.11.017. http://www.sciencedirect.com/science/article/pii/S0045782517303560 MathSciNetGoogle Scholar
  34. Niu B, Olhoff N, Lund E, Cheng G (2010) Discrete material optimization of vibrating laminated composite plates for minimum sound radiation. Int J Solids Struct 47(16):2097–2114.  https://doi.org/10.1016/j.ijsolstr.2010.04.008 zbMATHGoogle Scholar
  35. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New YorkzbMATHGoogle Scholar
  36. Noguchi Y, Yamada T, Otomori M, Izui K, Nishiwaki S (2015) An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization. Appl Phys Lett 107 (22):221,909.  https://doi.org/10.1063/1.4936997 Google Scholar
  37. Noguchi Y, Yamada T, Yamamoto T, Izui K, Nishiwaki S (2016) Topological derivative for an acoustic-elastic coupled system based on two-phase material model. Mech Eng Lett 2:16–00, 246–16–00, 246.  https://doi.org/10.1299/mel.16-00246
  38. Noguchi Y, Yamamoto T, Yamada T, Izui K, Nishiwaki S (2017) A level set-based topology optimization method for simultaneous design of elastic structure and coupled acoustic cavity using a two-phase material model. J Sound Vib 404:15–30.  https://doi.org/10.1016/j.jsv.2017.05.040. http://www.sciencedirect.com/science/article/pii/S0022460X17304352 Google Scholar
  39. Novotny AA, Sokołowski J (2013) Topological derivatives in shape optimization. Springer, BerlinzbMATHGoogle Scholar
  40. Olhoff N, Bendsøe M, Rasmussen J (1991) On cad-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89:259–279zbMATHGoogle Scholar
  41. Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer, New YorkzbMATHGoogle Scholar
  42. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49.  https://doi.org/10.1016/0021-9991(88)90002-2. http://www.sciencedirect.com/science/article/pii/0021999188900022 MathSciNetzbMATHGoogle Scholar
  43. Park J, Wang S (2008) Noise reduction for compressors by modes control using topology optimization of eigenvalue. J Sound Vib 315(4-5):836–848.  https://doi.org/10.1016/j.jsv.2008.01.064 Google Scholar
  44. Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20 (1):2–11.  https://doi.org/10.1007/s001580050130 Google Scholar
  45. Peng D, Merriman B, Osher S, Zhao H, Kang M (1999) A pde-based fast local level set method. J Comput Phys 155(2):410–438.  https://doi.org/10.1006/jcph.1999.6345 MathSciNetzbMATHGoogle Scholar
  46. Picelli R, Vicente W M, Pavanello R, Xie YM (2015) Evolutionary topology optimization for natural frequency maximization problems considering acoustic-structure interaction. Finite Elem Anal Des 106:56–64.  https://doi.org/10.1016/j.finel.2015.07.010 Google Scholar
  47. Sethian J, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528.  https://doi.org/10.1006/jcph.2000.6581. http://linkinghub.elsevier.com/retrieve/pii/S0021999100965811 MathSciNetzbMATHGoogle Scholar
  48. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 2nd edn. Cambridge Monograph on Applied and Computational Mathematics, Cambridge Univeristy Press. http://math.berkeley.edu/~sethian/2006/Publications/Book/2006/book_1999.html
  49. Shu L, Yu Wang M, Ma Z (2014) Level set based topology optimization of vibrating structures for coupled acoustic-structural dynamics. Comput Struct 132:34–42.  https://doi.org/10.1016/j.compstruc.2013.10.019 Google Scholar
  50. Sigmund O (2001) Design of multiphysics actuators using topology optimization - part i. Comput Methods Appl Mech Eng 190(49-50):6577–6604.  https://doi.org/10.1016/S0045-7825(01)00251-1 zbMATHGoogle Scholar
  51. Sigmund O, Clausen PM (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196(13-16):1874–1889.  https://doi.org/10.1016/j.cma.2006.09.021 MathSciNetzbMATHGoogle Scholar
  52. Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055.  https://doi.org/10.1007/s00158-013-0978-6 MathSciNetGoogle Scholar
  53. Søndergaard MB, Pedersen CBW (2014) Applied topology optimization of vibro-acoustic hearing instrument models. J Sound Vib 333(3):683–692.  https://doi.org/10.1016/j.jsv.2013.09.029 Google Scholar
  54. Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124.  https://doi.org/10.1007/s001580100129 Google Scholar
  55. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373.  https://doi.org/10.1002/nme.1620240207 MathSciNetzbMATHGoogle Scholar
  56. Svanberg K (2001) A class of globally convergent optimization methods based on conservative convex separable approximations. Siam J Optim 12(2):555–573.  https://doi.org/10.1137/S1052623499362822 MathSciNetzbMATHGoogle Scholar
  57. Vicente WM, Picelli R, Pavanello R, Xie YM (2015) Topology optimization of frequency responses of fluid-structure interaction systems. Finite Elem Anal Des 98:1–13.  https://doi.org/10.1016/j.finel.2015.01.009 Google Scholar
  58. Villanueva CH, Maute K (2014) Density and level set-xfem schemes for topology optimization of 3-d structures. Comput Mech 54(1):133–150.  https://doi.org/10.1007/s00466-014-1027-z MathSciNetzbMATHGoogle Scholar
  59. Villanueva CH, Maute K (2017) Cutfem topology optimization of 3d laminar incompressible flow problems. Comput Methods Appl Mech Eng 320:444–473.  https://doi.org/10.1016/j.cma.2017.03.007 MathSciNetGoogle Scholar
  60. Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784.  https://doi.org/10.1007/s00158-010-0602-y zbMATHGoogle Scholar
  61. Wang X, Bathe KJ (1997) Displacement/pressure based mixed finite element formulations for acoustic fluid-structure interaction problems. Int J Numer Methods Eng 40(11):2001–2017.  https://doi.org/10.1002/(SICI)1097-0207(19970615)40:11<2001::AID-NME152>3.0.CO;2-W zbMATHGoogle Scholar
  62. Xing X, Wei P, Wang MY (2010) A finite element-based level set method for structural optimization. Int J Numer Methods Eng 82(7):805–842.  https://doi.org/10.1002/nme.2785 MathSciNetzbMATHGoogle Scholar
  63. Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45):2876–2891.  https://doi.org/10.1016/j.cma.2010.05.013. http://www.sciencedirect.com/science/article/pii/S0045782510001623 MathSciNetzbMATHGoogle Scholar
  64. Yamamoto T, Maruyama S, Nishiwaki S, Yoshimura M (2008) Thickness optimization of a multilayered structure on the coupling surface between a structure and an acoustic cavity. J Sound Vib 318(1-2):109–130.  https://doi.org/10.1016/j.jsv.2008.04.004 Google Scholar
  65. Yamamoto T, Maruyama S, Nishiwaki S, Yoshimura M (2009) Topology design of multi-material soundproof structures including poroelastic media to minimize sound pressure levels. Comput Methods Appl Mech Eng 198(17-20):1439–1455.  https://doi.org/10.1016/j.cma.2008.12.008 MathSciNetzbMATHGoogle Scholar
  66. Yang R, Du J (2013) Microstructural topology optimization with respect to sound power radiation. Struct Multidiscip Optim 47(2):191–206.  https://doi.org/10.1007/s00158-012-0838-9 zbMATHGoogle Scholar
  67. Yoon GH, Jensen JS, Sigmund O (2007) Topology optimization of acoustic–structure interaction problems using a mixed finite element formulation. Int. J Numer Methods Eng 70(9):1049–1075.  https://doi.org/10.1002/nme.1900. http://doi.wiley.com/10.1002/nme.1900 MathSciNetzbMATHGoogle Scholar
  68. Yoon GH, Choi H, Hur S (2018) Multiphysics topology optimization for piezoelectric acoustic focuser. Comput Methods Appl Mech Eng 332:600–623.  https://doi.org/10.1016/j.cma.2017.12.002 MathSciNetGoogle Scholar
  69. Zhang X, Kang Z (2013) Topology optimization of damping layers for minimizing sound radiation of shell structures. J Sound Vib 332(10):2500–2519.  https://doi.org/10.1016/j.jsv.2012.12.022 Google Scholar
  70. Zienkiewicz O, Taylor R (2000) The finite element method. Butterworth Heinemann, OxfordzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Acoustic-Mechanical Micro Systems (CAMM), Department of Mechanical EngineeringTechnical University of DenmarkLyngbyDenmark
  2. 2.Centre for Acoustic-Mechanical Micro Systems (CAMM), Department of Electrical EngineeringTechnical University of DenmarkLyngbyDenmark

Personalised recommendations