Advertisement

Robust compliance topology optimization using the first-order second-moment method

  • Benedikt KriegesmannEmail author
  • Julian K. Lüdeker
Research Paper
  • 37 Downloads

Abstract

A robust topology optimization approach is presented which uses the probabilistic first-order second-moment method for the estimation of mean value and variance of the compliance. The considered sources of uncertainty are the applied load, the spatially varying Young’s modulus, and the geometry with focus on the latter two. In difference to similar existing approaches for robust topology optimization, the presented approach requires only one solution of an adjoint system to determine the derivatives of the variance, which keeps the computation time close to the deterministic optimization. For validation, also the second-order fourth-moment method and Monte Carlo simulations are embedded into the optimization. For all approaches, the applicability and impact on the resulting design are demonstrated by application to benchmark examples. For random load, the first-order second-moment approach provides unsatisfying results. For random, Young’s modulus and geometry, however, the robust topology optimization using first-order second-moment approach provides robust designs at very little computational cost.

Keywords

Robust topology optimization Reliability-based topology optimization 

Notes

References

  1. Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness – application to truss structures. Comput Struct 89(11):1131–1141.  https://doi.org/10.1016/j.compstruc.2010.11.004. http://www.sciencedirect.com/science/article/pii/S004579491000266X CrossRefGoogle Scholar
  2. Bae Kr, Wang S, Choi KK (2002) Reliability-based topology optimization. In: 9th AIAA/ISSMO symposium on multidisciplinary analysis and optimization. Atlanta, pp AIAA 2002–5542Google Scholar
  3. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202.  https://doi.org/10.1007/BF01650949 CrossRefGoogle Scholar
  4. Carrasco M, Ivorra B, Ramos AM (2015) Stochastic topology design optimization for continuous elastic materials. Comput Methods Appl Mech Eng 289:131–154.  https://doi.org/10.1016/j.cma.2015.02.003. http://www.sciencedirect.com/science/article/pii/S0045782515000444 MathSciNetCrossRefGoogle Scholar
  5. Clausen A, Andreassen E (2017) On filter boundary conditions in topology optimization. Struct Multidiscip Optim 56(5):1147–1155.  https://doi.org/10.1007/s00158-017-1709-1 MathSciNetCrossRefGoogle Scholar
  6. Cornell CA (1969) Structural safety specifications based on second-moment reliability analysis. IABSE Rep Work Commiss 4:235–245.  https://doi.org/10.5169/seals-5948. https://www.e-periodica.ch/digbib/view?pid=bse-re-001:1969:4::324 Google Scholar
  7. Dunning PD, Kim HA, Mullineux G (2011) Introducing loading uncertainty in topology optimization. AIAA J 49(4):760–768.  https://doi.org/10.2514/1.J050670 CrossRefGoogle Scholar
  8. Elishakof I (1999) Probabilistic theory of structures. Dover, MineolaGoogle Scholar
  9. Elishakoff I (1990) An idea of the uncertainty triangle. Shock Vibr Digest 22:1CrossRefGoogle Scholar
  10. de Gournay F, Allaire G, Jouve F (2008) Shape and topology optimization of the robust compliance via the level set method. ESAIM: Control, Optim Calculus Variat 14(01):43–70.  https://doi.org/10.1051/cocv:2007048. http://www.esaim-cocv.org/action/article_S1292811907000486 MathSciNetzbMATHGoogle Scholar
  11. Guo X, Zhang W, Zhang L (2013) Robust structural topology optimization considering boundary uncertainties. Comput Methods Appl Mech Eng 253:356–368.  https://doi.org/10.1016/j.cma.2012.09.005. http://www.sciencedirect.com/science/article/pii/S0045782512002800 MathSciNetCrossRefzbMATHGoogle Scholar
  12. Haldar A, Mahadevan S (1999) Probability, reliability and statistical methods in engineering design, 1. auflage edn. Wiley, New YorkGoogle Scholar
  13. Harzheim L (2008) Strukturoptimierung: Grundlagen und Anwendungen. Harri Deutsch VerlagGoogle Scholar
  14. Hasofer AM, Lind NC (1974) Exact and invariant second-moment code format. J Eng Mech Div, 111–121Google Scholar
  15. Jalalpour M, Guest JK, Igusa T (2013) Reliability-based topology optimization of trusses with stochastic stiffness. Struct Safety 43:41–49.  https://doi.org/10.1016/j.strusafe.2013.02.003. http://www.sciencedirect.com/science/article/pii/S0167473013000180 CrossRefGoogle Scholar
  16. Jalalpour M, Tootkaboni M (2016) An efficient approach to reliability-based topology optimization for continua under material uncertainty. Struct Multidiscip Optim 53(4):759–772.  https://doi.org/10.1007/s00158-015-1360-7 MathSciNetCrossRefGoogle Scholar
  17. Jung HS, Cho S (2004) Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties. Finite Elem Anal Des 41(3):311–331.  https://doi.org/10.1016/j.finel.2004.06.002. http://linkinghub.elsevier.com/retrieve/pii/S0168874X0400112X CrossRefGoogle Scholar
  18. Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscip Optim 26 (5):295–307.  https://doi.org/10.1007/s00158-003-0322-7. http://link.springer.com/10.1007/s00158-003-0322-7 CrossRefGoogle Scholar
  19. Kim SR, Park JY, Lee WG, Yu JS, Han SY (2007) Reliability-based topology optimization based on evolutionary structural optimization. Int J Mech Syst Sci Eng 1(3):135–139. http://www.waset.org/publications/11584 Google Scholar
  20. Kriegesmann B, Rolfes R, Jansen EL, Elishakoff I, Hühne C, Kling A (2012) Design optimization of composite cylindrical shells under uncertainty. Comput Mater Continua 32(3):177–200.  https://doi.org/10.3970/cmc.2012.032.177. http://www.techscience.com/doi/10.3970/cmc.2012.032.177 Google Scholar
  21. Lazarov BS, Schevenels M, Sigmund O (2012) Topology optimization considering material and geometric uncertainties using stochastic collocation methods. Struct Multidiscip Optim 46(4):597–612.  https://doi.org/10.1007/s00158-012-0791-7. http://link.springer.com/article/10.1007/s00158-012-0791-7 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781.  https://doi.org/10.1002/nme.3072. https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3072 MathSciNetCrossRefzbMATHGoogle Scholar
  23. Lazarov BS, Schevenels M, Sigmund O (2012) Topology optimization with geometric uncertainties by perturbation techniques. Int J Numer Methods Eng 90(11):1321–1336.  https://doi.org/10.1002/nme.3361. http://onlinelibrary.wiley.com/doi/10.1002/nme.3361/abstract CrossRefzbMATHGoogle Scholar
  24. Li L, Khandelwal K (2014) Two-point gradient-based MMA (TGMMA) algorithm for topology optimization. Comput Struct 131:34–45.  https://doi.org/10.1016/j.compstruc.2013.10.010. http://www.sciencedirect.com/science/article/pii/S0045794913002812 CrossRefGoogle Scholar
  25. López C, Baldomir A, Hernández S (2017) The relevance of reliability-based topology optimization in early design stages of aircraft structures. Structural and Multidisciplinary Optimization.  https://doi.org/10.1007/s00158-017-1740-2. http://link.springer.com/10.1007/s00158-017-1740-2
  26. Luo Y, Zhou M, Wang MY, Deng Z (2014) Reliability based topology optimization for continuum structures with local failure constraints. Comput Struct 143:73–84.  https://doi.org/10.1016/j.compstruc.2014.07.009 CrossRefGoogle Scholar
  27. Maute K, Frangopol DM (2003) Reliability-based design of MEMS mechanisms by topology optimization. Comput Struct 81(8):813–824.  https://doi.org/10.1016/S0045-7949(03)00008-7. http://www.sciencedirect.com/science/article/pii/S0045794903000087 CrossRefGoogle Scholar
  28. Papadimitriou DI, Mourelatos ZP (2018) Reliability-based topology optimization using mean-value second-order saddlepoint approximation. J Mech Des 140(3):031,403–031,403–11.  https://doi.org/10.1115/1.4038645 CrossRefGoogle Scholar
  29. Schevenels M, Lazarov BS, Sigmund O (2011) Robust topology optimization accounting for spatially varying manufacturing errors. Comput Methods Appl Mech Eng 200(49–52):3613–3627.  https://doi.org/10.1016/j.cma.2011.08.006. http://www.sciencedirect.com/science/article/pii/S0045782511002611 CrossRefzbMATHGoogle Scholar
  30. Schuëller GI, Valdebenito M (2010) Reliability-based optimization - an overview. Comput Technol Rev 1:121–155CrossRefGoogle Scholar
  31. Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mechanica Sinica 25(2):227–239.  https://doi.org/10.1007/s10409-009-0240-z. https://link.springer.com/article/10.1007/s10409-009-0240-z CrossRefzbMATHGoogle Scholar
  32. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373.  https://doi.org/10.1002/nme.1620240207. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620240207/abstract MathSciNetCrossRefzbMATHGoogle Scholar
  33. Torii A, Novotny A, dos Santos RB (2016) Robust compliance topology optimization based on the topological derivative concept. Int J Numer Methods Eng 106(11):889–903.  https://doi.org/10.1002/nme.5144 MathSciNetCrossRefzbMATHGoogle Scholar
  34. Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784.  https://doi.org/10.1007/s00158-010-0602-y CrossRefzbMATHGoogle Scholar
  35. Yao W, Chen X, Luo W, van Tooren M, Guo J (2011) Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Progress Aerosp Sci 47(6):450–479.  https://doi.org/10.1016/j.paerosci.2011.05.001. http://www.sciencedirect.com/science/article/pii/S0376042111000340 CrossRefGoogle Scholar
  36. Zang TA, Hemsch MJ, Hilburger MW, Kenny SP, Luckring JM, Maghami P, Padula SL, Stroud WJ (2002) Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles. Tech. Rep. NASA/TM-2002-211462, National Aeronautics and Space Administration Langley Research CenterGoogle Scholar
  37. Zhao J, Wang C (2014) Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices. Comput Methods Appl Mech Eng 273:204–218.  https://doi.org/10.1016/j.cma.2014.01.018. http://www.sciencedirect.com/science/article/pii/S0045782514000310 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hamburg University of TechnologyHamburgGermany

Personalised recommendations