Advertisement

Optimising the load path of compression-only thrust networks through independent sets

  • A. LiewEmail author
  • R. Avelino
  • V. Moosavi
  • T. Van Mele
  • P. Block
Research Paper

Abstract

This paper presents network load path optimisation for the weight minimisation of compression-only thrust networks, allowing for the design of material efficient surface structures. A hybrid evolutionary and function-gradient optimisation process finds the optimal internal force state of the network, by manipulating the force densities of a selected number of edges based on the network indeterminacy. These selected edges are the independent sets, and are found through the Reduced Row Echelon form of the network’s equilibrium matrix. It was found that networks can have certain independent sets that have a significant influence on both the stability of the optimisation algorithm, and in the final load path/volume of the structure. Finding the most effective independent sets was handled by data-driven methods, applied to many thousands of independent set trials. This provided insight into the behaviour of the underlying network and dramatically increased the rate of finding successful independent sets. The importance and weights of the network edges highlighted key areas of the network that allowed structural judgement and improvements to be made.

Keywords

Reduced Row Echelon Equilibrium matrix Optimisation algorithm 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Baker WF, Beghini LL, Mazurek A, Carrion J, Beghini A (2013) Maxwell’s reciprocal diagrams and discrete Michell frames. Struct Multidiscip Optim 48(2):267–277MathSciNetCrossRefGoogle Scholar
  2. Beghini LL, Carrion J, Beghini A, Mazurek A, Baker WF (2014) Structural optimization using graphic statics. Struct Multidiscip Optim 49(3):351–366CrossRefGoogle Scholar
  3. Block P, Ochsendorf J (2007) Thrust network analysis: a new methodology for three-dimensional equilibrium. J Int Assoc Shell Spatial Struct 48(3):167–173Google Scholar
  4. Block P (2009) Thrust Network Analysis: Exploring three-dimensional equilibrium. PhD dissertation, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  5. Block P, Lachauer L (2014) Three-dimensional funicular analysis of masonry vaults. Mechan Res Commun 56:53–60CrossRefGoogle Scholar
  6. Block Research Group (2014) ETH Zurich, RhinoVAULT - Designing funicular form with Rhino. [Online] Available at http://block.arch.ethz.ch/brg/tools/rhinovault
  7. Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefzbMATHGoogle Scholar
  8. De Wilde WP (2006) Conceptual design of lightweight structures: the role of morphological indicators and the structural index. High Perform Struct Mater III: WIT Trans Built Environ 85:3–12Google Scholar
  9. Pedregosa, et al. (2011) Scikit-learn: machine learning in Python. JMLR 12:2825–2830MathSciNetzbMATHGoogle Scholar
  10. Python Software Foundation (2017) Python Language Reference. Version 3.6Google Scholar
  11. Fraternali F (2010) A thrust network approach to the equilibrium problem of unreinforced masonry vaults via polyhedral stress functions. Mechan Res Commun 37:198–204CrossRefzbMATHGoogle Scholar
  12. Gilbert M, Tyas A (2003) Layout optimization of large-scale pin-jointed frames. Eng Comput 20(8):1044–1064CrossRefzbMATHGoogle Scholar
  13. Goldberg DE (1989) Genetic algorithms in search, optimization & machine learning, 1st edn. Addison-Wesley Professional, BostonzbMATHGoogle Scholar
  14. He L, Gilbert M (2015) Rationalization of trusses generated via layout optimization. Struct Multidiscip Optim 52(4):677–694MathSciNetCrossRefGoogle Scholar
  15. Holland JH (1975) Adaptation in natural and artificial systems, 1st edn. The University of Michigan, Ann ArborGoogle Scholar
  16. Jiang Y, Zegard T, Baker WF (2018) Form-finding of grid-shells using the ground structure and potential energy methods: a comparative study and assessment. Struct Multidiscip Optim 57:1187–1211CrossRefGoogle Scholar
  17. Jones E, Oliphant T, Peterson P et al (2001) SciPy: Open source scientific tools for Python. [Online; accessed 2017-02-13]Google Scholar
  18. Liew A, Pagonakis D, Van Mele T, Block P (2018) Load-path optimisation of funicular networks. Meccanica 53:279–294MathSciNetCrossRefzbMATHGoogle Scholar
  19. Linkwitz K, Schek HJ (1971) Einige Bemerkungen zur Berechnung von vorgespannten Seilnetzkonstruktionen. Ingenieur – Archiv 40:145–158CrossRefGoogle Scholar
  20. Lu H, Gilbert M, Tyas A (2018) Theoretically optimal bracing for pre-existing building frames. Struct Multidiscip Optim 58(2):677–686CrossRefGoogle Scholar
  21. Marmo F, Rosati L (2017) Reformulation and extension of the thrust network analysis. Comput Struct 182:104–118CrossRefGoogle Scholar
  22. Maxwell JC (1864) On reciprocal figures and diagrams of forces. Philos Mag J Ser 4(27):250–261CrossRefGoogle Scholar
  23. Mazurek A, Baker WF, Tort C (2011) Geometrical aspects of optimum truss like structures. Struct Multidiscip Optim 43(2):231–242CrossRefGoogle Scholar
  24. Michell AGM (1904) The limits of economy of material in frame-structures. Lond Edinb Dublin Philos Mag J Sci 8(47):589–597CrossRefzbMATHGoogle Scholar
  25. O’Dwyer DW (1999) Funicular analysis of masonry vaults. Comput Struct 73:187–197CrossRefzbMATHGoogle Scholar
  26. Pyl L, Sitters CWM, De Wilde WP (2013) Design and optimization of roof trusses using morphological indicators. Adv Eng Softw 62-63:9–19CrossRefGoogle Scholar
  27. Schek HJ (1974) The force density method for form finding and computation of general networks. Comput Methods Appl Mech Eng 3:115–134MathSciNetCrossRefGoogle Scholar
  28. Storn R, Price K (1997) Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetCrossRefzbMATHGoogle Scholar
  29. Stromberg LL, Beghini A, Baker WF, Paulino GH (2018) Topology optimization for braced frames: combining continuum and beam/column elements. Eng Struct 37:106–124CrossRefGoogle Scholar
  30. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015) Version 1.7.0. Online: https://www.tensorflow.org
  31. Van der Walt S, Colbert C, Varoquaux G (2011) The NumPy array: A structure for efficient numerical computation. Comput Sci Eng 13:22–30CrossRefGoogle Scholar
  32. Van Mele T, Block P (2014) Algebraic graph statics. Comput-Aided Des 53:104–116CrossRefGoogle Scholar
  33. Van Mele T, Liew A, Mendéz T, Rippmann M et al (2017) COMPAS: A framework for computational research in architecture and structures. [Online; accessed 2017-07-06]Google Scholar
  34. Vandenbergh T, De Wilde WP, Latteur P, Verbeeck B, Ponsaert1 W, Van Steirteghem J (2006) Influence of stiffness constraints on optimal design of trusses using morphological indicators. High Perform Struct Mater III: WIT Trans Built Environ 85:31–40Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. Liew
    • 1
    Email author
  • R. Avelino
    • 1
  • V. Moosavi
    • 1
  • T. Van Mele
    • 1
  • P. Block
    • 1
  1. 1.Institute of Technology in ArchitectureETH ZurichZurichSwitzerland

Personalised recommendations