Structural and Multidisciplinary Optimization

, Volume 59, Issue 5, pp 1723–1731 | Cite as

Combination of topology optimization and Lie derivative-based shape optimization for electro-mechanical design

  • Erin KuciEmail author
  • François Henrotte
  • Pierre Duysinx
  • Christophe Geuzaine
Research Paper


This paper presents a framework for the simultaneous application of shape and topology optimization in electro-mechanical design problems. Whereas the design variables of a shape optimization are the geometrical parameters of the CAD description, the design variables upon which density-based topology optimization acts represent the presence or absence of material at each point of the region where it is applied. These topology optimization design variables, which are called densities, are by essence substantial quantities. This means that they are attached to matter while, on the other hand, shape optimization implies ongoing changes of the model geometry. An appropriate combination of the two representations is therefore necessary to ensure a consistent design space as the joint shape-topology optimization process unfolds. The optimization problems dealt with in this paper are furthermore constrained to verify the governing partial differential equations (PDEs) of a physical model, possibly nonlinear, and discretized by means of, e.g., the finite element method (FEM). Theoretical formulas, based on the Lie derivative, to express the sensitivity of the performance functions of the optimization problem, are derived and validated to be used in gradient-based algorithms. The method is applied to the torque ripple minimization in an interior permanent magnet synchronous machine (PMSM).


Lie derivative Shape optimization Topology optimization Sensitivity analysis Simultaneous shape and topology PMSM 



  1. Allaire G, Jouve F, Toader A-M (2002) A level-set method for shape optimization. Comptes Rendus Mathematique 334(12):1125–1130MathSciNetCrossRefzbMATHGoogle Scholar
  2. Arora JS, Haug EJ (1979) Methods of design sensitivity analysis in structural optimization. AIAA journal 17(9):970–974MathSciNetCrossRefGoogle Scholar
  3. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Meth Appl Mech Eng 71(2):197–224MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bendsøe MP, Rodrigues HC (1991) Integrated topology and boundary shape optimization of 2-d solids. Comput Methods Appl Mech Eng 87(1):15–34MathSciNetCrossRefzbMATHGoogle Scholar
  5. Biedinger J, Lemoine D (1997) Shape sensitivity analysis of magnetic forces. IEEE Trans Magn 33(3):2309–2316CrossRefGoogle Scholar
  6. Bletzinger K-U, Maute K (1997) Towards generalized shape and topology optimization. Eng Optim 29(1-4):201–216CrossRefGoogle Scholar
  7. Bossavit A (1998) Computational electromagnetism: variational formulations, complementarity, edge elements. Academic PressGoogle Scholar
  8. Braibant V, Fleury C (1984) Shape optimal design using b-splines. Comput Methods Appl Mech Eng 44(3):247–267CrossRefzbMATHGoogle Scholar
  9. Christiansen AN, Nobel-Jørgensen M, Aage N, Sigmund O, Bærentzen JA (2014) Topology optimization using an explicit interface representation. Struct Multidiscip Optim 49(3):387–399MathSciNetCrossRefGoogle Scholar
  10. Choi KK, Kim N-H (2006) Structural sensitivity analysis and optimization 1: linear systems. Springer Science & Business Media, New YorkGoogle Scholar
  11. Duboeuf F, Béchet E (2017) Embedded solids of any dimension in the x-fem. Finite Elem Anal Des 130:80–101MathSciNetCrossRefGoogle Scholar
  12. Dular P, Geuzaine C, Genon A, Legros W (1999) An evolutive software environment for teaching finite element methods in electromagnetism. IEEE Trans Magn 35(3):1682–1685CrossRefGoogle Scholar
  13. Emmendoerfer H Jr, Fancello EA (2016) Topology optimization with local stress constraint based on level set evolution via reaction–diffusion. Comput Methods Appl Mech Eng 305:62–88MathSciNetCrossRefGoogle Scholar
  14. Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390CrossRefGoogle Scholar
  15. Fleury C, Schmit LA Jr (1980) Dual methods and approximation concepts in structural synthesis, NASA CR–3226Google Scholar
  16. Gangl P, Langer U, Laurain A, Meftahi H, Sturm K (2015) Shape optimization of an electric motor subject to nonlinear magnetostatics. SIAM J Sci Comput 37(6):B1002–B1025MathSciNetCrossRefzbMATHGoogle Scholar
  17. Geuzaine C, Remacle J-F (2009) Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331MathSciNetCrossRefzbMATHGoogle Scholar
  18. Hassani B, Tavakkoli SM, Ghasemnejad H (2013) Simultaneous shape and topology optimization of shell structures. Struct Multidiscip Optim 48(1):221–233MathSciNetCrossRefzbMATHGoogle Scholar
  19. Henrotte F (2004) Handbook for the computation of electromagnetic forces in a continuous medium. Int Compumag Society Newsletter 24(2):3–9Google Scholar
  20. Hermann R, et al (1964) Harley flanders, differential forms with applications to the physical sciences. Bull Am Math Soc 70(4):483–487CrossRefGoogle Scholar
  21. Hintermüller M, Laurain A (2008) Electrical impedance tomography: from topology to shape. Control Cybern 37(4):913–933MathSciNetzbMATHGoogle Scholar
  22. Hiptmair R, Li J (2013) Shape derivatives in differential forms i: An intrinsic perspective. Annali di Matematica 192(6):1077–1098MathSciNetCrossRefzbMATHGoogle Scholar
  23. Hiptmair R, Li J (2017) Shape derivatives in differential forms ii: Shape derivatives for scattering problems. SAM Seminar for Applied Mathematics, ETH , Zürich. Research ReportGoogle Scholar
  24. Hsu M-H, Hsu Y-L (2005) Interpreting three-dimensional structural topology optimization results. Comput Struct 83(4-5):327–337CrossRefGoogle Scholar
  25. Hsu Y-L, Hsu M-S, Chen C-T (2001) Interpreting results from topology optimization using density contours. Comput Struct 79(10):1049–1058CrossRefGoogle Scholar
  26. Kalameh HA, Pierard O, Friebel C, Béchet E (2016) Semi-implicit representation of sharp features with level sets. Finite Elem Anal Des 117:31–45MathSciNetCrossRefGoogle Scholar
  27. Kuci E, Henrotte F, Duysinx P, Geuzaine C (2017) Design sensitivity analysis for shape optimization based on the Lie derivative. Comput Methods Appl Mech Eng 317:702–722MathSciNetCrossRefGoogle Scholar
  28. Kumar A, Gossard D (1996) Synthesis of optimal shape and topology of structures. J Mech Des 118(1):68–74CrossRefGoogle Scholar
  29. Kwack J, Min S, Hong J-P (2010) Optimal stator design of interior permanent magnet motor to reduce torque ripple using the level set method. IEEE Trans Magn 46(6):2108–2111CrossRefGoogle Scholar
  30. Lian H, Christiansen AN, Tortorelli DA, Sigmund O, Aage N (2017) Combined shape and topology optimization for minimization of maximal von mises stress. Struct Multidiscip Optim 55(5):1541–1557MathSciNetCrossRefGoogle Scholar
  31. Misztal MK, Erleben K, Bargteil A, Fursund J, Christensen BB, Bærentzen JA, Bridson R (2014) Multiphase flow of immiscible fluids on unstructured moving meshes. IEEE Trans Vis Comput Graph 20(1):4–16CrossRefGoogle Scholar
  32. Novotny AA, Feijóo RA, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Meth Appl Mech Eng 192(7):803–829MathSciNetCrossRefzbMATHGoogle Scholar
  33. Olhoff N, Bendsøe MP, Rasmussen J (1991) On cad-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89(1-3):259–279CrossRefzbMATHGoogle Scholar
  34. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49MathSciNetCrossRefzbMATHGoogle Scholar
  35. Park I-H, Coulomb J-L, Hahn S-Y (1993) Implementation of continuum sensitivity analysis with existing finite element code. IEEE Trans Magn 29(2):1787–1790CrossRefGoogle Scholar
  36. Qian Z, Ananthasuresh G (2004) Optimal embedding of rigid objects in the topology design of structures. Mech Based Des Struct Mach 32(2):165–193CrossRefGoogle Scholar
  37. Rozvany G (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21(2):90–108MathSciNetCrossRefGoogle Scholar
  38. Sadowski N, Lefevre Y, Lajoie-Mazenc M, Cros J (1992) Finite element torque calculation in electrical machines while considering the movement. IEEE Trans Magn 28(2):1410–1413. CrossRefGoogle Scholar
  39. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055MathSciNetCrossRefGoogle Scholar
  40. Sokolowski J, Zochowski A (2003) Optimality conditions for simultaneous topology and shape optimization. SIAM J Control Optim 42(4):1198–1221MathSciNetCrossRefzbMATHGoogle Scholar
  41. Sokolowski J, Zolesio J-P (1992) Introduction to shape optimization. In: Introduction to Shape Optimization, Springer, pp 5–12Google Scholar
  42. Svanberg K (1987) The method of moving asymptotes- a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefzbMATHGoogle Scholar
  43. Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573MathSciNetCrossRefzbMATHGoogle Scholar
  44. Tang P-S, Chang K-H (2001) Integration of topology and shape optimization for design of structural components. Struct Multidiscip Optim 22(1):65–82CrossRefGoogle Scholar
  45. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246MathSciNetCrossRefzbMATHGoogle Scholar
  46. Yaji K, Otomori M, Yamada T, Izui K, Nishiwaki S, Pironneau O (2016) Shape and topology optimization based on the convected level set method. Struct Multidiscip Optim 54(3):659–672MathSciNetCrossRefGoogle Scholar
  47. Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53(1):175–192CrossRefGoogle Scholar
  48. Zhang J, Zhang W, Zhu J, Xia L (2012) Integrated layout design of multi-component systems using xfem and analytical sensitivity analysis. Comput Methods Appl Mech Eng 245:75–89MathSciNetCrossRefzbMATHGoogle Scholar
  49. Zhang W, Xia L, Zhu J, Zhang Q (2011) Some recent advances in the integrated layout design of multicomponent systems. J Mech Des 133(10):104503CrossRefGoogle Scholar
  50. Zhang W-H, Beckers P, Fleury C (1995) A unified parametric design approach to structural shape optimization. Int J Numer Methods Eng 38(13):2283–2292CrossRefzbMATHGoogle Scholar
  51. Zhu J, Zhang W, Beckers P (2009) Integrated layout design of multi-component system. Int J Numer Methods Eng 78(6):631–651CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Aerospace and Mechanical EngineeringUniversity of LiègeLiègeBelgium
  2. 2.Department of Electrical Engineering and Computer ScienceUniversity of LiègeLiègeBelgium
  3. 3.EPL-iMMC-MEMAUniversité catholique de LouvainOttignies-Louvain-la-NeuveBelgium

Personalised recommendations