Advertisement

Structural and Multidisciplinary Optimization

, Volume 59, Issue 5, pp 1639–1654 | Cite as

Enhancing CAD-based shape optimisation by automatically updating the CAD model’s parameterisation

  • Dheeraj Agarwal
  • Trevor T. RobinsonEmail author
  • Cecil G. Armstrong
  • Christos Kapellos
Research Paper
  • 180 Downloads

Abstract

This paper presents an approach which increases the flexibility of a computer-aided design (CAD) model by automatically refining its parameterization and adding new CAD features to the model’s feature tree. It aims to overcome the limitations imposed by the choice of parameters used during the initial model creation, which constrains how the model shape can change during design optimisation. Parametric effectiveness compares the maximum performance improvement that can be achieved using a parameterisation strategy to the maximum performance improvement that can be obtained where the model is unconstrained in how it moves. As such, it provides a measure of how good a parameterisation strategy is and allows different strategies to be compared. The change in parametric effectiveness due to inserting multiple different CAD features can be calculated using a single adjoint analysis; therefore, the computational cost is essentially independent of the number of parameterisation strategies being analysed. The described approach can be used to automatically add new features to the model and subsequently allows the use of the newly added parameters, along with the existing parameters to be used for optimization, providing the opportunity for a better performing product. The developed approach is applied on CAD models created in CATIA V5 for 2D and 3D finite element and computational fluid dynamic problems.

Keywords

CAD Feature Optimisation Adjoint Parameterisation 

Notes

Acknowledgements

The authors gratefully acknowledge the discussions with Dr. Carsten Othmer on the optimisation results presented in Section 5.

Funding information

This work has been conducted within the IODA project (http://ioda.sems.qmul.ac.uk), funded by the European Union HORIZON 2020 Framework Programme for Research and Innovation under Grant Agreement No. 642959.

References

  1. Agarwal D, Robinson TT, Armstrong CG, Marques S, Vasilopoulos I, Meyer M (2018) Parametric design velocity computation for CAD-based design optimization using adjoint methods. Eng Comput 34:225–239.  https://doi.org/10.1007/s00366-017-0534-x CrossRefGoogle Scholar
  2. Anderson CW, Crawford-Hines S (2000) Fast generation of nurbs surfaces from polygonal mesh models of human anatomy. Colorado State University Computer Science Technical Report CS-99 101Google Scholar
  3. Auriemma S, Banovic M, Mykhaskiv O, Legrand H, Müller J, Walther A (2016) Optimisation of a Ubend using CAD-based adjoint method with differentiated CAD kernel, VII European Congress on Computational Methods in Applied Sciences and Engineering, https://www.eccomas2016.org/proceedings/pdf/10065.pdf Accessed 02/18/2018
  4. Banović M, Mykhaskiv O, Auriemma S, Walther A, Legrand H, Müller JD (2018) Algorithmic differentiation of the Open CASCADE Technology CAD kernel and its coupling with an adjoint CFD solver, Optimization Methods and Software, 33:4-6, 813-828,  https://doi.org/10.1080/10556788.2018.1431235
  5. Belegundu A, Rajan S (1988) A shape optimization approach based on natural design variables and shape functions. Comput Methods Appl Mech Eng 66:87–106.  https://doi.org/10.1016/0045-7825(88)90061-8 CrossRefzbMATHGoogle Scholar
  6. Burgos MJ (2015) NURBS-based geometry parameterization for aerodynamic shape optimization. Dissertation, PhD thesis, Universidad Politecnica de MadridGoogle Scholar
  7. CATIA V5 (2017) http://www.3ds.com/products-services/catia/. Accessed 01/27/2017
  8. Chen S, Torterelli D (1997) Three-dimensional shape optimization with variational geometry. Struct Optim 13:81–94.  https://doi.org/10.1007/BF01199226 CrossRefGoogle Scholar
  9. Geuzaine C, Remacle JF (2009) GMSH: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79:1309–1331.  https://doi.org/10.1002/nme.2579 CrossRefzbMATHGoogle Scholar
  10. Giles MB, Pierce N (2000) An introduction to the adjoint approach to design. Flow Turbul Combust 65:393–415.  https://doi.org/10.1023/A:1011430410075 CrossRefzbMATHGoogle Scholar
  11. Guo B (1997) Surface reconstruction: from points to splines. Comput Aided Des 29:269–277.  https://doi.org/10.1016/S0010-4485(96)00055-3 CrossRefGoogle Scholar
  12. Hammond M, Robinson A (2000) Python programming on win32: Help for windows programmers. O'Reilly Media IncGoogle Scholar
  13. Hardee E, Chang K, Tu J, Choi KK, Grindeanu I, Yu X (1999) A CAD-based design parameterization for shape optimization of elastic solids. Adv Eng Softw 30:185–199.  https://doi.org/10.1016/S0965-9978(98)00065-9 CrossRefGoogle Scholar
  14. Helgason E, Krajnovic S (2012) Aerodynamic shape optimization of a pipe using the adjoint method. ASME International Mechanical Engineering Congress & Exposition 7:9–15.  https://doi.org/10.1115/IMECE2012-89396 Google Scholar
  15. Hoogervorst JE, Elham A (2017) Wing aerostructural optimization using the individual discipline feasible architecture. Aerosp Sci Technol 65:90–99.  https://doi.org/10.1016/j.ast.2017.02.012
  16. Jameson A (2004) Efficient aerodynamic shape optimization. 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, multidisciplinary analysis optimization conferences.  https://doi.org/10.2514/6.2004-4369
  17. Jameson A, Martinelli L, Pierce N (1998) Optimum aerodynamic design using the Navier–Stokes equations. Theor Comput Fluid Dyn 10:213–237.  https://doi.org/10.1007/s001620050060 CrossRefzbMATHGoogle Scholar
  18. Jesudasan R, Zhang X, Müller J (2017) Adjoint Optimisation of Internal Turbine Cooling Channel Using NURBS-Based Automatic and Adaptive Parametrisation Method. ASME. Gas Turbine India Conference, Volume 1: Compressors, Fans and Pumps; Turbines; Heat Transfer; Combustion, Fuels and Emissions.  https://doi.org/10.1115/GTINDIA2017-4669
  19. Karpouzas GK, Papoutsis-Kiachagias EM, Schumacher T, Villiers Ed, Giannakoglou KC, Othmer C (2016) Adjoint optimization for vehicle external aerodynamics. Intl J Automot Eng 7:1–7.  https://doi.org/10.20485/jsaeijae.7.1_1
  20. Kenway G, Kennedy G, Martins J (2010) A CAD-free approach to high-fidelity aerostructural optimization. 13th AIAA/ISSMO multidisciplinary analysis optimization Conference, Conference, Multidisciplinary Analysis Optimization Conferences  https://doi.org/10.2514/6.2010-9231
  21. Kripac J (1997) A mechanism for persistently naming topological entities in history based parametric solid models. Computer-Aided design 29(2): 113-122.  https://doi.org/10.1016/S0010-4485(96)00040-1
  22. Latif M, Boyd R, Hannam R (1993) Integrating CAD and manufacturing intelligence through features and objects. Int J Comput Integr Manuf 6:87–93.  https://doi.org/10.1080/09511929308944558 CrossRefGoogle Scholar
  23. Mader CA, RA Martins J, Alonso JJ, Der Weide EV (2008) Adjoint: an approach for the rapid development of discrete adjoint solvers. AIAA J 46:863–873.  https://doi.org/10.2514/1.29123 CrossRefGoogle Scholar
  24. Martin MJ, Andrés E, Widhalm M, Bitrián P, Lozano C (2012) Non-uniform rational B-splines-based aerodynamic shape design optimization with the DLR TAU code. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 226:1225-1242. https://doi.org/10.1177%2F0954410011421704Google Scholar
  25. Mei Y, Wang X, Cheng G (2008) A feature-based topological optimization for structure design. Adv Eng Softw 39:71–87.  https://doi.org/10.1016/j.advengsoft.2007.01.023 CrossRefGoogle Scholar
  26. Nadarajah S, Jameson A (2001) Studies of the continuous and discrete adjoint approaches to viscous automatic aerodynamic shape optimization, 15th AIAA Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences,  https://doi.org/10.2514/6.2001-2530
  27. Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int J Numer Methods Fluids 58:861–877.  https://doi.org/10.1002/fld.1770 MathSciNetCrossRefzbMATHGoogle Scholar
  28. Papoutsis-Kiachagias E, Giannakoglou KC (2016) Continuous adjoint methods for turbulent flows, applied to shape and topology optimization: industrial applications. Arch Comput Methods Eng 23:255–299.  https://doi.org/10.1007/s11831-014-9141-9 MathSciNetCrossRefzbMATHGoogle Scholar
  29. Python 3.5 (2017) http://www.python.org/downloads/release/python-350/. Accessed 10/05/2017
  30. Robinson TT, Armstrong CG, Chua HS (2012) Strategies for adding features to CAD models in order to optimize performance. Struct Multidiscip Optim 46:415–424.  https://doi.org/10.1007/s00158-012-0770-z MathSciNetCrossRefzbMATHGoogle Scholar
  31. Robinson TT, Armstrong CG, Chua HS (2013) Determining the parametric effectiveness of a CAD model. Eng Comput 29:111–126.  https://doi.org/10.1007/s00366-011-0248-4 CrossRefGoogle Scholar
  32. Salomons OW, van Houten FJ, Kals H (1993) Review of research in feature-based design. J Manuf Syst 12:113–132.  https://doi.org/10.1016/0278-6125(93)90012-I CrossRefGoogle Scholar
  33. Samareh J (2001) Survey of shape parametrisation techniques for high-fidelity multidisciplinary shape optimization. AIAA J 39:877–884.  https://doi.org/10.2514/2.1391 CrossRefGoogle Scholar
  34. Samareh J (2004) Aerodynamic shape optimization based on free-form deformation. 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, multidisciplinary analysis optimization conferences.  https://doi.org/10.2514/6.2004-4630
  35. Scipy Optimize (2017) https://docs.scipy.org/doc/scipy/reference/optimize.html. Accessed 01/27/2017
  36. Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. In Proceedings of the 13th annual conference on Computer graphics and interactive techniques ACM 20: 151–160.  https://doi.org/10.1145/15922.15903
  37. Shah JJ (1991) Assessment of features technology. Comput Aided Des 23:331–343.  https://doi.org/10.1016/0010-4485(91)90027-T CrossRefzbMATHGoogle Scholar
  38. TAPENADE (2018). https://www-sop.inria.fr/tropics/tapenade.html. Accessed 02/21/2018
  39. Torreguitart IS, Verstraete T, Mueller L (2017) Optimization of the LS89 axial turbine profile using a cad and adjoint based approach. International Journal of Turbomachinery, Propulsion and Power 3:20.  https://doi.org/10.3390/ijtpp3030020
  40. Walther A, Griewank A (2010) A Package for the Automatic Differentiation of Algorithms Written in C/C. URL https://projects.coin-or.org/ADOL-C Accessed 02/18/2018
  41. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246.  https://doi.org/10.1016/S0045-7825(02)00559-5 MathSciNetCrossRefzbMATHGoogle Scholar
  42. Xu S, Jahn W, Müller J (2014) CAD based shape optimization with CFD using a discrete adjoint. Int J Numer Methods Fluids 74:153–168.  https://doi.org/10.1002/fld.3844 CrossRefGoogle Scholar
  43. Xu S, Timme S, Mykhaskiv O, Müller J (2017) Wing-body junction optimisation with CAD-based parametrisation including a moving intersection. Aerosp Sci Technol 68:543–551.  https://doi.org/10.1016/j.ast.2017.06.014 CrossRefGoogle Scholar
  44. Yu G, Müller J, Jones D (2011) CAD based shape optimization using adjoint sensitivities. Comput Fluids 46:512–516.  https://doi.org/10.1016/j.compfluid.2011.01.043 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringQueen’s University BelfastBelfastNorthern Ireland, UK
  2. 2.School of Mechanical and Maritime EngineeringLiverpool John Moores UniversityLiverpoolUK
  3. 3.Volkswagen AG, Group Research, CAE MethodsWolfsburgGermany

Personalised recommendations