Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Adaptive mesh refinement in stress-constrained topology optimization

  • 813 Accesses

  • 2 Citations

Abstract

We present a topology structural optimization framework with adaptive mesh refinement and stress-constraints. Finite element approximation and geometry representation benefit from such refinement by enabling more accurate stress field predictions and greater resolution of the optimal structural boundaries. We combine a volume fraction filter to impose a minimum design feature size, the RAMP penalization to generate “black-and-white designs” and a RAMP-like stress definition to resolve the “stress singularity problem.” Regions with stress concentrations dominate the optimized design. As such, rigorous simulations are required to accurately approximate the stress field. To achieve this goal, we invoke a threshold operation and mesh refinement during the optimization. We do so in an optimal fashion, by applying adaptive mesh refinement techniques that use error indicators to refine and coarsen the mesh as needed. In this way, we obtain more accurate simulations and greater resolution of the design domain. We present results in two dimensions to demonstrate the efficiency of our method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Notes

  1. 1.

    In (48), we have neglected the higher order terms. For details on higher order nonlinear functionals, we refer to Becker and Rannacher (2001).

References

  1. Aage N, Andreassen E, Lazarov BS (2015) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51(3):565–572

  2. Ainsworth M, Oden JT (2011) A posteriori error estimation in finite element analysis, vol 37. Wiley

  3. Allaire G, Dapogny C, Frey P (2014) Shape optimization with a level set based mesh evolution method. Computer Methods in Applied Mechanics and Engineering p. https://doi.org/10.1016/j.cma.2014.08.028, http://hal.upmc.fr/hal-00933545

  4. Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The fenics project version 1.5. Arch Numer Softw 3:100. https://doi.org/10.11588/ans.2015.100.20553

  5. Amstutz S, Novotny AA (2010) Topological optimization of structures subject to von mises stress constraints. Struct Multidiscip Optim 41(3):407–420. https://doi.org/10.1007/s00158-009-0425-x

  6. Balay S, Gropp WD, McInnes LC, Smith BF (1997) Efficient management of parallelism in object oriented numerical software libraries. In: Arge E, Bruaset A M, Langtangen H P (eds) Modern software tools in scientific computing. Birkhȧuser Press, pp 163–202

  7. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H, Zhang H (2016) PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.7, Argonne National Laboratory

  8. Becker R, Rannacher R (2001) An optimal control approach to a posteriori error estimation in finite element methods. Acta numerica 10:1–102

  9. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654. https://doi.org/10.1007/s004190050248

  10. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50 (9):2143–2158. https://doi.org/10.1002/nme.116

  11. Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36(2):125–141

  12. Bruggi M, Verani M (2011) A fully adaptive topology optimization algorithm with goal-oriented error control. Comput Struct 89(15):1481–1493. https://doi.org/10.1016/j.compstruc.2011.05.003. http://www.sciencedirect.com/science/article/pii/S0045794911001337

  13. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190 (26):3443–3459. https://doi.org/10.1016/S0045-7825(00)00278-4. http://www.sciencedirect.com/science/article/pii/S0045782500002784

  14. Cai Z, He C, Zhang S (2017) Improved {ZZ} a posteriori error estimators for diffusion problems: conforming linear elements. Comput Methods Appl Mech Eng 313:433–449. https://doi.org/10.1016/j.cma.2016.10.006. http://www.sciencedirect.com/science/article/pii/S0045782516302183

  15. Cheng G, Guo X (1995) A note on star shape feasible domain in structural topology optimization. In: Proceedings of the second China-Japan symposium on optimization of structural and mechanical systems/ Beijiag

  16. Cheng G, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Multidiscip Optim 13(4):258–266

  17. Cheng G, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20(2):129–148

  18. Christophe G, Jean-François R (2009) Gmsh: a 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331. DOI:https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2579

  19. Costa JCA Jr, Alves MK, Al-Qureshi HA (2005) A stress based h-adaptive topology optimization method. In: Proceedings of COBEM 2005: 18th international congress of mechanical engineering

  20. De Leon DM, Alexandersen J, O Fonseca JS, Sigmund O (2015) Stress-constrained topology optimization for compliant mechanism design. Struct Multidiscip Optim 52(5):929–943. https://doi.org/10.1007/s00158-015-1279-z

  21. Dörfler W (1996) A convergent adaptive algorithm for poisson’s equation. SIAM J Numer Anal 33(3):1106–1124. https://doi.org/10.1137/0733054

  22. Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478

  23. Gain AL, Paulino GH (2013) A critical comparative assessment of differential equation-driven methods for structural topology optimization. Struct Multidiscip Optim 48(4):685–710. https://doi.org/10.1007/s00158-013-0935-4

  24. Garg VV (2012) Coupled flow systems adjoint techniques and uncertainty quantification. PhD thesis, The University of Texas at Austin

  25. Guilherme CEM, Fonseca JSO (2007) Topology optimization of continuum structures with epsilon-relaxed stress constraints. International Symposium on Solid Mechanics (2007 mar 05-07). São Paulo

  26. Guo X, Zhang WS, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47):3439–3452. https://doi.org/10.1016/j.cma.2011.08.016. http://www.sciencedirect.com/science/article/pii/S0045782511002714

  27. Guo X, Zhang W, Zhong W (2014) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655. https://doi.org/10.1016/j.cma.2013.10.003. http://www.sciencedirect.com/science/article/pii/S0045782513002557

  28. Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Multidiscip Optim 11(1):1–12

  29. Hintermu̇ller M, Hinze M (2009) Moreau-Yosida regularization in state constrained elliptic control problems: error estimates and parameter adjustment. SIAM J Numer Anal 47(3):1666–1683. https://doi.org/10.1137/080718735

  30. Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47. https://doi.org/10.1007/s00158-012-0880-7

  31. Jensen KE (2016) Solving stress and compliance constrained volume minimization using anisotropic mesh adaptation, the method of moving asymptotes and a global p-norm. Struct Multidiscip Optim 54(4):831–841

  32. Kirk BS, Peterson JW, Stogner RH, Carey GF (2006) libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng Comput 22(3–4):237–254. https://doi.org/10.1007/s00366-006-0049-3

  33. Kirsch U (1990) On singular topologies in optimum structural design. Struct Optim 2(3):133–142

  34. Lazarov BS, Sigmund O (2011) Filters in topology optimization based on helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781. https://doi.org/10.1002/nme.3072

  35. Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620. https://doi.org/10.1007/s00158-009-0440-y

  36. Lian H, Christiansen AN, Tortorelli DA, Sigmund O, Aage N (2017) Combined shape and topology optimization for minimization of maximal von mises stress. Struct Multidiscip Optim 55(5):1541–1557. https://doi.org/10.1007/s00158-017-1656-x

  37. LLNL (2018) hypre: high performance preconditioners. Lawrence Livermore National Laboratory. http://www.llnl.gov/CASC/hypre/

  38. Maute K, Ramm E (1995) Adaptive topology optimization. Struct Optim 10(2):100–112. https://doi.org/10.1007/BF01743537

  39. Nana A, Cuillière J C, Francois V (2016) Towards adaptive topology optimization. Adv Eng Softw 100:290–307

  40. Nguyen-Xuan H (2017) A polytree-based adaptive polygonal finite element method for topology optimization. Int J Numer Methods Eng 110(10):972–1000. https://doi.org/10.1002/nme.5448

  41. Oden JT, Prudhomme S (2001) Goal-oriented error estimation and adaptivity for the finite element method. Comput Math Appl 41(5–6):735–756

  42. Ovall J (2006) The dangers to avoid when using gradient recovery methods for finite element error estimation and adaptivity. Tech. rep., Technical Report 6, Max Planck Institute for Mathematics in the Sciences

  43. Panesar A, Brackett D, Ashcroft I, Wildman R, Hague R (2017) Hierarchical remeshing strategies with mesh mapping for topology optimisation. Int J Numer Methods Eng 111(7):676–700. https://doi.org/10.1002/nme.5488

  44. París J, Navarrina F, Colominas I, Casteleiro M (2010) Improvements in the treatment of stress constraints in structural topology optimization problems. J Comput Appl Math 234(7):2231–2238

  45. Park YK (1995) Extensions of optimal layout design using the homogenization method. PhD thesis, University of Michigan

  46. Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41(8):1417–1434. https://doi.org/10.1002/(SICI)1097-0207(19980430)41:8<1417::AID-NME344>3.0.CO;2-N

  47. Rozvany G, Birker T (1994) On singular topologies in exact layout optimization. Struct Multidiscip Optim 8(4):228–235

  48. Sharma A, Maute K (2018) Stress-based topology optimization using spatial gradient stabilized XFEM. Struct Multidiscip Optim 57(1):17–38. https://doi.org/10.1007/s00158-017-1833-y

  49. Stainko R (2006) An adaptive multilevel approach to the minimal compliance problem in topology optimization. Commun Numer Methods Eng 22(2):109–118. https://doi.org/10.1002/cnm.800

  50. Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124. https://doi.org/10.1007/s001580100129

  51. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

  52. Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573. https://doi.org/10.1137/S1052623499362822

  53. Svärd H (2015) Interior value extrapolation: a new method for stress evaluation during topology optimization. Struct Multidiscip Optim 51(3):613–629. https://doi.org/10.1007/s00158-014-1171-2

  54. Sved G, Ginos Z (1968) Structural optimization under multiple loading. Int J Mech Sci 10(10):803–805

  55. Verfürth R (1999) A review of a posteriori error estimation techniques for elasticity problems. Comput Methods Appl Mech Eng 176(1-4):419–440

  56. Verfürth R (2013) A posteriori error estimation techniques for finite element methods. Oxford University Press, Oxford

  57. Wallin M, Ristinmaa M, Askfelt H (2012) Optimal topologies derived from a phase-field method. Struct Multidiscip Optim 45(2):171–183. https://doi.org/10.1007/s00158-011-0688-x

  58. Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784. https://doi.org/10.1007/s00158-010-0602-y

  59. Wang S, de Sturler E, Paulino GH (2010) Dynamic adaptive mesh refinement for topology optimization. arXiv:10094975

  60. Wang Y, Kang Z, He Q (2014) Adaptive topology optimization with independent error control for separated displacement and density fields. Comput Struct 135:50–61. https://doi.org/10.1016/j.compstruc.2014.01.008. http://www.sciencedirect.com/science/article/pii/S0045794914000194

  61. Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90:55–64. https://doi.org/10.1016/j.compstruc.2011.10.009. http://www.sciencedirect.com/science/article/pii/S0045794911002562

  62. Yang R, Chen C (1996) Stress-based topology optimization. Struct Optim 12(2-3):98–105

  63. Young WC, Budynas RG (2002) Roark’s formulas for stress and strain, vol 7. McGraw-Hill, New York

  64. Zhang WS, Guo X, Wang MY, Wei P (2013) Optimal topology design of continuum structures with stress concentration alleviation via level set method. Int J Numer Methods Eng 93(9):942–959. https://doi.org/10.1002/nme.4416

  65. Ziems JC, Ulbrich S (2011) Adaptive multilevel inexact sqp methods for pde-constrained optimization. SIAM J Optim 21(1):1–40. https://doi.org/10.1137/080743160

  66. Zienkiewicz OC, Zhu JZ (1992a) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods Eng 33(7):1331–1364

  67. Zienkiewicz OC, Zhu JZ (1992b) The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int J Numer Methods Eng 33(7):1365–1382

Download references

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The author thanks the Livermore Graduate Scholar Program for its support.

Author information

Correspondence to Miguel A. Salazar de Troya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Jose Herskovits

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salazar de Troya, M.A., Tortorelli, D.A. Adaptive mesh refinement in stress-constrained topology optimization. Struct Multidisc Optim 58, 2369–2386 (2018). https://doi.org/10.1007/s00158-018-2084-2

Download citation

Keywords

  • Topology optimization
  • Stress constrained
  • Adaptive mesh refinement