A heuristic approach for actuator layout designs in deformable mirror devices based on current value optimization

  • Yuto Yamaki
  • Yuki Sato
  • Kazuhiro Izui
  • Takayuki Yamada
  • Shinji Nishiwaki
  • Yoshikazu Hirai
  • Osamu Tabata
Research Paper
  • 68 Downloads

Abstract

Deformable mirrors are vital components in fundus imaging modality incorporating adaptive optics systems. The application of precisely controlled electric currents to multiple electrodes located under the mirror surface deform its shape so that optical aberrations caused by a patient’s eye can be nullified. The higher number of actuators used, the more accurately the mirror surface can be transformed to a target shape. However, deformable mirror manufacturability limitations demand that the number of electromagnetic actuators be minimized, so there is a pressing need for an efficient method to determine the layout of a minimum number of actuators that will deliver desired aberration correction performance. In this paper, we present an actuator layout design method based on the degree to which each actuator contributes to mirror shaped adjustment, calculated according to the amount of electric current supplied to individual actuators. This method minimizes the number of actuators while preventing the error between a target mirror shape and the actual deformed mirror shape from exceeding a certain limit. To assess the aberration correction performance for each actuator layout, we also provide a method for optimizing the electric currents supplied to an array of actuators that will correctly adjust the mirror surface to target Zernike modes, corresponding to defocus, astigmatism, coma and trefoil aberrations, given the imposition of upper and lower limits upon the currents supplied to the actuators.

Keywords

Layout design method Adaptive optics Deformable mirror Shape control Zernike polynomials 

References

  1. An H, Xian K, Huang H (2016) Actuator placement optimization for adaptive trusses using a two-level multipoint approximation method. Struct Multidiscip Optim 53(1):29–48MathSciNetCrossRefGoogle Scholar
  2. Babcock H W (1953) The possibility of compensating astronomical seeing. Publ Astron Soc Pac 65(386):229–236CrossRefGoogle Scholar
  3. Bifano T G, Perreault J, Mali R K, Horenstein M N (1999) Microelectromechanical deformable mirrors. IEEE J Select Top Quant Electron 5(1):83–89CrossRefGoogle Scholar
  4. Genberg V, Michels G (2001) Opto-mechanical analysis of segmented/adaptive optics. SPIE Paper 4444(10)Google Scholar
  5. Haftka R T, Adelman H M (1985a) An analytical investigation of shape control of large space structures by applied temperatures. AIAA J 23(3):450–457Google Scholar
  6. Haftka R T, Adelman H M (1985b) Selection of actuator locations for static shape control of large space structures by heuristic integer programing. Comput Struct 20(1):575–582Google Scholar
  7. Hamelinck R, Ellenbroek R, Rosielle N, Steinbuch M, Verhaegen M, Doelman N (2008) Validation of a new adaptive deformable mirror concept. In: SPIE Astronomical telescopes+ instrumentation, international society for optics and photonics, pp 70,150Q–70,150QGoogle Scholar
  8. Hofer H, Chen L, Yoon G Y, Singer B, Yamauchi Y, Williams D R (2001) Improvement in retinal image quality with dynamic correction of the eye’s aberrations. Opt Express 8(11):631–643CrossRefGoogle Scholar
  9. Jovanovic N, Martinache F, Guyon O, Clergeon C, Singh G, Kudo T, Garrel V, Newman K, Doughty D, Lozi J et al (2015) The subaru coronagraphic extreme adaptive optics system: enabling high-contrast imaging on solar-system scales. Publ Astron Soc Pac 127(955):890CrossRefGoogle Scholar
  10. Kruchenko A V, Nováková K, Mokrỳ P (2013) Optimization of electrode geometry and piezoelectric layer thickness of a deformable mirror. In: EPJ Web of conferences, EDP sciences, vol 48, pp 00011Google Scholar
  11. Liang J, Williams D R, Miller D T (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. JOSA A 14(11):2884–2892CrossRefGoogle Scholar
  12. Merino D, Loza-Alvarez P (2016) Adaptive optics scanning laser ophthalmoscope imaging: technology update. Clin Ophthal (Auckland NZ) 10:743CrossRefGoogle Scholar
  13. Michels G, Genberg V, Doyle K (2004) Using the dresp3 to improve multidisciplinary optimization. MSC Softw, 2004–30Google Scholar
  14. Michels G, Genberg V, Doyle K, Bisson G (2005) Design optimization of actuator layouts of adaptive optics using a genetic algorithm. In: Proc. SPIE, vol 5877Google Scholar
  15. Murakawa K, Suto H, Tamura M, Kaifu N, Takami H, Takato N, Oya S, Hayano Y, Gaessler W, Kamata Y (2004) Ciao: coronagraphic imager with adaptive optics on the subaru telescope. Publ Astron Soc Japan 56(3):509–519CrossRefGoogle Scholar
  16. Planchon T A, Rousseau J P, Burgy F, Chériaux G, Chambaret J P (2005) Adaptive wavefront correction on a 100-tw/10-hz chirped pulse amplification laser and effect of residual wavefront on beam propagation. Opt Commun 252(4):222–228CrossRefGoogle Scholar
  17. Priboṡek J, Diaci J, Sinzinger S (2016) Simple unimorph deformable mirrors fabricated from piezo buzzers. J Micromech Microeng 26(5):055,009CrossRefGoogle Scholar
  18. Rausch P, Verpoort S, Wittrock U (2015) Unimorph deformable mirror for space telescopes: design and manufacturing. Opt Express 23(15):19,469–19,477CrossRefGoogle Scholar
  19. Roorda A, Romero-Borja F, Donnelly I I I W J, Queener H, Hebert T J, Campbell M C (2002) Adaptive optics scanning laser ophthalmoscopy. Opt Express 10(9):405–412CrossRefGoogle Scholar
  20. Sun B, Salter P S, Booth M J (2015) Pulse front adaptive optics: a new method for control of ultrashort laser pulses. Opt Express 23(15):19,348–19,357CrossRefGoogle Scholar
  21. Verpoort S, Wittrock U (2010) Actuator patterns for unimorph and bimorph deformable mirrors. Appl Opt 49(31):G37–G46CrossRefGoogle Scholar
  22. Wang J, Silva D E (1980) Wave-front interpretation with zernike polynomials. Appl Opti 19(9):1510–1518CrossRefGoogle Scholar
  23. Wu Z, Kong X, Zhang Z, Wu J, Wang T, Liu M (2017) Magnetic fluid deformable mirror with a two-layer layout of actuators. Micromachines 8(3):72CrossRefGoogle Scholar
  24. Yang E H, Hishinuma Y, Cheng J G, Trolier-McKinstry S, Bloemhof E, Levine B M (2006) Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane. J Microelectromech Syst 15(5):1214–1225CrossRefGoogle Scholar
  25. Yoon H S (2013) Optimal shape control of adaptive structures for performance maximization. Struct Multidiscip Optim 48(3):571–580MathSciNetCrossRefGoogle Scholar
  26. Zernike V F (1934) Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1:689–704.  https://doi.org/10.1016/S0031-8914(34)80259-5 CrossRefMATHGoogle Scholar
  27. Zhang S, Du J, Yang D, Zhang Y, Li S (2017) A combined shape control procedure of cable mesh reflector antennas with optimality criterion and integrated structural electromagnetic concept. Struct Multidiscip Optim 55(1):289–295MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuto Yamaki
    • 1
  • Yuki Sato
    • 1
  • Kazuhiro Izui
    • 1
  • Takayuki Yamada
    • 1
  • Shinji Nishiwaki
    • 1
  • Yoshikazu Hirai
    • 2
  • Osamu Tabata
    • 2
  1. 1.Department of Mechanical Engineering and ScienceKyoto UniversityKyotoJapan
  2. 2.Department of Micro Engineering and ScienceKyoto UniversityKyotoJapan

Personalised recommendations