Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Materials selection for a set of multiple parts considering manufacturing costs and weight reduction with structural isoperformance using direct multisearch optimization

  • 384 Accesses

  • 6 Citations

Abstract

Materials selection is a matter of great importance to engineering design and software tools are valuable to inform decisions in the early stages of product development. However, when a set of alternative materials is available for the different parts a product is made of, the question of what optimal material mix to choose for a group of parts is not trivial. The engineer/designer therefore goes about this in a part-by-part procedure. Optimizing each part per se can lead to a global sub-optimal solution from the product point of view. An optimization procedure to deal with products with multiple parts, each with discrete design variables, and able to determine the optimal solution assuming different objectives is therefore needed. To solve this multiobjective optimization problem, a new routine based on Direct MultiSearch (DMS) algorithm is created. Results from the Pareto front can help the designer to align his/hers materials selection for a complete set of materials with product attribute objectives, depending on the relative importance of each objective.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. ArcelorMittal (2015) ArcelorMittal automotive steel solutions. http://goo.gl/N0nmXi

  2. Ashby MF (2000) Multi-objective optimization in material design and selection. Acta Mater 48(1):359–369

  3. Ashby MF (2005) Materials selection in mechanical design. MRS Bull 30:995

  4. Bar-On I, Kirchain R, Roth R (2002) Technical cost analysis for pem fuel cells. J Power Sources 109(1):71–75

  5. Custodio AL, Madeira JFA, Vaz AIF, Vicente LN (2011) Direct multisearch for multiobjective optimization. SIAM J Optim 21(3):1109–1140

  6. Dewhurst P, Boothroyd G (1988) Early cost estimating in product design. J Manuf Syst 7(3):183–191

  7. Elgh F, Cederfeldt M (2008) Cost-based producibility assessment: Analysis and synthesis approaches through design automation. J Eng Des 19(2):113–130

  8. Ermolaeva NS, Castro MB, Kandachar PV (2004) Materials selection for an automotive structure by integrating structural optimization with environmental impact assessment. Mater Des 25(8):689– 698

  9. Esawi AMK, Ashby MF (2003) Cost estimates to guide pre-selection of processes. Mater Des 24(8):605–616

  10. Field F, Kirchain R, Roth R (2007) Process cost modeling: Strategic engineering and economic evaluation of materials technologies. JOM 59(10):21–32

  11. Fixson SK (2005) Product architecture assessment: A tool to link product, process, and supply chain design decisions. J Oper Manag 23(3-4, Special Issue: Coordinating product design, process design, and supply chain design decisions):345–369

  12. Fuchs ERH, Bruce EJ, Ram RJ, Kirchain RE (2006) Process-based cost modeling of photonics manufacture: The cost competitiveness of monolithic integration of a 1550-nm dfb laser and an electroabsorptive modulator on an inp platform. J Lightwave Technol 24(8):3175

  13. Fuchs ERH, Field FR, Roth R, Kirchain RE (2008) Strategic materials selection in the automobile body: Economic opportunities for polymer composite design. Compos Sci Technol 68(9):1989–2002

  14. ASM Handbook (1997) Materials selection and design, Ed. Dieter, EG ASM. Materials Park 998:OI-I

  15. Johnson M, Kirchain R (2009) Quantifying the effects of parts consolidation and development costs on material selection decisions: A process-based costing approach. Int J Prod Econ 119(1):174–186

  16. Kirchain RE (2001) Cost modeling of materials and manufacturing processes. Elsevier, Oxford, pp 1718–1727

  17. Leite M (2015) Data for this paper. https://sites.google.com/site/smo2015dmsandms/

  18. Leite M (2012) Techno economic evaluation in materials selection for multiple parts under oem-tier relations. Ph.D. thesis, Instituto Superior Técnico - Universidade Técnica de Lisboa. http://goo.gl/xqqj0w

  19. Leite M, Silva A, Henriques E (2014) On the influence of material selection decisions on second order cost factors, chap. 4. Springer, London, pp 59–79

  20. Luo A (2002) Magnesium: Current and potential automotive applications. JOM 54(2):42–48

  21. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, Boston

  22. Newnes LB, Mileham AR, Cheung WM, Marsh R, Lanham JD, Saravi ME, Bradbery RW (2008) Predicting the whole-life cost of a product at the conceptual design stage. J Eng Des 19(2):99–112

  23. Niazi A, Dai JS, Balabani S, Seneviratne L (2006) Product cost estimation: Technique classification and methodology review. J Manuf Sci Eng 128(2):563–575

  24. Olson GB (1997) Computational design of hierarchically structured materials. Science 277(5330):1237–1242

  25. Rao SS (1996) Engineering optimization: Theory and practice. Wiley

  26. Roth R, Clark J, Kelkar A (2001) Automobile bodies: Can aluminum be an economical alternative to steel JOM 53(8):28–32

  27. Sapuan S (2001) A knowledge-based system for materials selection in mechanical engineering design. Mater Des 22(8):687–695

  28. Schubel PJ (2010) Technical cost modelling for a generic 45-m wind turbine blade producedby vacuum infusion (vi). Renew Energy 35(1):183–189

  29. Schubel PJ (2012) Cost modelling in polymer composite applications: Case study analysis of existing and automated manufacturing processes for a large wind turbine blade. Compos B Eng 43(3):953–960

  30. ThyseenKrupp (2015) ThyseenKrupp automotive steel. http://goo.gl/VRfmb0

  31. Weck OLde, Jones MB (2006) Isoperformance: Analysis and design of complex systems with desired outcomes. Syst Eng 9(1):45–61

  32. Zhou CC, Yin GF, Hu XB (2009) Multi-objective optimization of material selection for sustainable products: Artificial neural networks and genetic algorithm approach. Mater Des 30(4):1209–1215

Download references

Acknowledgments

The authors thanks the financial support of FCT, Portugal, for financing the work under the MIT-Portugal Program. This work was supported by FCT, through IDMEC, under LAETA, project UID/EMS/50022/2013.

Author information

Correspondence to M. Leite.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leite, M., Silva, A., Henriques, E. et al. Materials selection for a set of multiple parts considering manufacturing costs and weight reduction with structural isoperformance using direct multisearch optimization. Struct Multidisc Optim 52, 635–644 (2015). https://doi.org/10.1007/s00158-015-1247-7

Download citation

Keywords

  • Materials selection
  • Multiple parts
  • Automotive case study
  • Direct search
  • Multi-objective optimization