Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces

Abstract

This paper presents the topology optimization method for the steady and unsteady incompressible Navier–Stokes flows driven by body forces, which typically include the constant force (e.g. the gravity) and the centrifugal and Coriolis forces. In the topology optimization problem, the artificial friction force with design variable interpolated porosity is added into the Navier–Stokes equations as the conventional method, and the physical body forces in the Navier–Stokes equations are penalized using the power-law approach. The topology optimization problem is analyzed by the continuous adjoint method, and solved by the finite element method in conjunction with the gradient based approach. In the numerical examples, the topology optimization of the fluidic channel, mass distribution of the flow and local velocity control are presented for the flows driven by body forces. The numerical results demonstrate that the presented method achieves the topology optimization of the flows driven by body forces robustly.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale stokes flow problems, Struct Multidisc Optim 35:175–180

  2. Abdelwahed M, Hassine M (2009) Topological optimization method for a geometric control problem in Stokes flow. Appl Numer Math 59:1823–1838

  3. Akl W, El-Sabbagh A, Al-Mitani K, Baz A (2008) Topology optimization of a plate coupled with acoustic cavity. Int J Solids Struct 46:2060–2074

  4. Allaire G, Jouve F, Toader A (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

  5. Amstutz S (2005) The topological asymptotic for the Navier–Stokes equations. ESAIM Contr Op Ca Va 11:401–425

  6. Amstutz S (2006) Topological sensitivity analysis for some nonlinear PDE systems. J Math Pures Appl 85:540–557

  7. Andreasen CS, Gersborg AR, Sigmund O (2008) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61:498–513

  8. Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations. SIAM

  9. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

  10. Bendsoe MP (2000) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

  11. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

  12. Bendsoe MP, Sigmund O (1999) Material interpolations in topology optimization. Arch Appl Mech 69:635–654

  13. Bendsoe MP, Sigmund O (2003) Topology optimization-theory, methods and applications. Springer

  14. Borrvall T, Petersson J (2003) Topology optimization of fluid in Stokes flow. Int J Numer Methods Fluids 41:77–107

  15. Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194:344–362

  16. Challis VJ, Guest JK (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 79:1284–1308

  17. Deng Y, Liu Z, Zhang P, Wu Y, Korvink JG (2010) Optimization of no-moving part fluidic resistance microvalves with low Reynolds number. In: Proceedings IEEE international conference on Micro Electro MechanicalSystems (MEMS), pp 67–70

  18. Deng Y, Liu Z, Zhang P, Liu Y, Wu Y (2011a) Topology optimization of unsteady incompressible Navier–Stokes flow. J Comput Phys 230:6688–6708

  19. Deng Y, Wu Y, Xuan M, Korvink JG, Liu Z (2011b) Dynamic optimization of valveless micropump. In: Proceedings IEEE international conference on solid-state sensors, actuators, and microsystems (transducers), pp 442–445

  20. Deng Y, Liu Z, Zhang P, Liu Y, Gao Q, Wu Y (2012) A flexible layout design method for passive micromixers. Biomed Microdevices. doi:10.1007/s10544-012-9672-5

  21. Duan X, Ma Y, Zhang R (2008) Shape-topology optimization for Navier–Stokes problem using variational level set method. J Comput Appl Math 222:487–499

  22. Duhring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317:557–575

  23. Elman HC, Silvester DJ, Wathen AJ (2006) Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford

  24. Evgrafov A (2006) Topology optimization of slightly compressible fluids. ZAMM 86:46–62

  25. Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidisc Optim 29:1–12

  26. Gersborg-Hansen A, Bendsoe MP, Sigmund O (2006a) Topology optimization of heat conduction problems using the finite volume method. Struct Multidisc Optim 31:251–259

  27. Gersborg-Hansen A, Berggren M, Dammann B (2006b) Topology optimizatiopn of mass distribution problems in Stokes flow. Solid Mech Appl 137:365–374

  28. Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design. Flow Turbul Combust 65:393–415

  29. Guest JK, Proevost JH (2006) Topology optimization of creeping fluid flows using a Darcy–Stokes finite element. Int J Numer Methods Eng 66:461–484

  30. Guillaume PH, Idris KS (2004) Topological sensitivity and shape optimization for the Stokes equations. SIAM J Control Optim 43:1–31

  31. Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints. Springer

  32. Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253

  33. Liu Z, Korvink JG (2008) Adaptive moving mesh level set method for structure optimization. Eng Optim 40:529–558

  34. Liu Z, Deng Y, Lin S, Xuan M (2011a) Optimization of micro Venturi diode in steady flow at low Reynolds number. Eng Optim. doi:10.1080/0305215X.2011.652100

  35. Liu Z, Gao Q, Zhang P, Xuan M, Wu Y (2011b) Topology optimization of fluid channels with flow rate equality constraints. Struct Multidisc Optim 44:31–37

  36. Maatoug H (2006) Shape optimization for the Stokes equations using topological sensitivity analysis. ARIMA 5:216–229

  37. Mlejnek HP (1992) Some aspects of the genesis of structures. Struct Optim 5:64–69

  38. Mohammadi B, Pironneau O (2010) Applied shape optimization for fluids. Oxford

  39. Nocedal J, Wright SJ (1998) Numerical optimization. Springer

  40. Nomura T, Sato K, Taguchi K, Kashiwa T, Nishiwaki S (2007) Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int J Numer Methods Eng 71:1261–1296

  41. Novotny AA, Feijoo RA, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Methods Appl Mech Eng 192:803–829

  42. Okkels F, Bruus H (2007) Scaling behavior of optimally structured catalytic microfluidic reactors. Phys. Rev. E 75:1–4

  43. Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng 65:975–1001

  44. Osher S, Sethian JA (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 78:12–49

  45. Panton RL (1984) Incompressible flow. Wiley

  46. Pingen G, Maute K (2010) Optimal design for non-Newtonian flows using a topology optimization approach. Comput Math Appl 59:2340–2350

  47. Pironneau O (1973) On optimum profiles in stokes flow. J Fluid Mech 59:117–128

  48. Pironneau O (1974) On optimum design in fluid mechanics. J Fluid Mech 64:97–110

  49. Rozvany GIN (1994) Shape and layout optimization of structural systems and optimality criteria methods. Springer

  50. Rozvany GIN (1997) Topology optimization in structural mechanics. Springer

  51. Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim 21:90–108

  52. Saxena A (2005) Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports. Struct Multidisc Optim 30:477–490

  53. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25:495–526

  54. Sigmund O (2001) A 99-line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127

  55. Sigmund O, Hougaard KG (2008) Geometric properties of optimal photonic crystals. Phys Rev Lett 100:153904

  56. Sokolowski J, Zochowski A (1999a) On the topological derivative in shape optimization. SIAM J Control Optim 37:1241–1272

  57. Sokolowski J, Zochowski A (1999b) Topological derivatives for elliptic problems. Inverse Problems 15:123–134

  58. Srinath DN, Mittal S (2010) An adjoint method for shape optimization in unsteady viscous flows. J Comput Phys 229:1994–2008

  59. Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng 24:359–373

  60. Wang MY (2005) Shape optimization with level set method incorporating topological derivatives. In: 6th congresses of structural and multidisciplinary optimization

  61. Wang MY, Wang X, Guo D (2003) A level set method for structural optimization. Comput Methods Appl Mech Eng 192:227–246

  62. Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of Darcy and Stokes flow. Int J Numer Methods Eng 69:1374–1404

  63. Xing X, Wei P, Wang MY (2010) A finite element-based level set method for structural optimization. Int J Numer Methods Engng 82:805–842

  64. Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227:10178–10195

  65. Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:197–224

Download references

Acknowledgements

This work was supported by NSFC (Nos. 50975272 and 11034007), the 863 Program (No. 2012AA040503) and Hundred Talent Project in CAS. The authors are grateful to Professor Krister Svanberg for supply of the MMA code. The authors are also grateful to the reviewers’ kind attention and valuable suggestions.

Author information

Correspondence to Zhenyu Liu or Yihui Wu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deng, Y., Liu, Z. & Wu, Y. Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces. Struct Multidisc Optim 47, 555–570 (2013). https://doi.org/10.1007/s00158-012-0847-8

Download citation

Keywords

  • Topology optimization
  • Navier–Stokes flows
  • Body force
  • Artificial friction force
  • Power-law approach
  • Continuous adjoint method