Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Topology optimization for transient wave propagation problems in one dimension

Design of filters and pulse modulators

  • 562 Accesses

  • 50 Citations

Abstract

Structures exhibiting band gap properties, i.e., having frequency ranges for which the structure attenuates propagating waves, have applications in damping of acoustic and elastic wave propagation and in optical communication. A topology optimization method for synthesis of such structures, employing a time domain formulation, is developed. The method is extended to synthesis of pulse converting structures with possible applications in optical communication.

This is a preview of subscription content, log in to check access.

References

  1. Allaire G, Francfort GA (1993) A numerical algorithm for topology and shape optimization. In: Bendsøe MP, Soares CAM (eds) Topology optimization of structures. Klüwer, pp 239–248

  2. Bendsøe MP, Sigmund O (2003) Topology Optimization: theory, methods and applications. Springer, Berlin

  3. Burger M, Osher S, Yablonovitch E (2004) Inverse problem techniques for the design of photonic crystals. IEICE Trans Electron E87-C(3):258–265

  4. Chung YS, Cheon C, Hahn SY (2000) Reconstruction of dielectric cylinders using FDTD and topology optimization technique. IEEE Trans Magn 36(4):956–959

  5. Cox SJ, Dobson DC (1999) Maximizing band gaps in two-dimensional photonic crystals. SIAM J Appl Math 59(6): 2108–2120

  6. Frey WR, Tortorelli DA, Johnson HT (2005) Topology optimization of a photonic crystal waveguide termination to maximize directional emission. Appl Phys Lett 86(11):111–114

  7. Halkjær S, Sigmund O, Jensen JS (2005) Inverse design of phononic crystals by topology optimization. Z Kristallogr 220(9–10):895–905

  8. Halkjær S, Sigmund O, Jensen JS (2006) Maximizing band gaps in plate structures. Struct Multidisc Optim 32(4):263–275

  9. Haug E, Arora J (1978) Design sensitivity analysis of elastic mechanical systems. Comput Methods Appl Mech Eng 15(1):35–62

  10. Hussein MI, Hamza K, Hulbert GM, Scott RA, Saitou K (2006) Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Struct Multidisc Optim 31(1):60–75

  11. Jensen JS (2007) Topology optimization of dynamics problems with Padé approximants. Int J Numer Methods Eng doi:10.1002/nme.2065

  12. Jensen JS, Sigmund O (2004) Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 84(12):2022–2024

  13. Jensen JS, Sigmund O (2005) Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B Opt Phys 22(6):1191–1198

  14. Li Y, Saitou K, Kikuchi N (2004) Topology optimization of thermally actuated compliant mechanisms considering time-transient effect. Finite Elem Anal Des 40(11):1317–1331

  15. Michaleris P, Tortorelli DA, Vidal C (1994) Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications in elastoplasticity. Int J Numer Methods Eng 37(14):2471–2499

  16. Nomura T, Sato K, Taguchi K, Kashiwa T, Nishiwaki S (2007) Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int J Numer Methods Eng 71(11):1261–1296

  17. Pedersen C (2004) Crashworthiness design of transient frame structures using topology optimization. Comput Methods Appl Mech Eng 193(6–8):653–678

  18. Sigmund O, Jensen JS (2003) Systematic design of phononic band gap materials and structures by topology optimization. Philos Trans Royal Soc Math Phys Eng Sci 361:1001–1019

  19. Smith FG, King TA (2000) Optics and photonics—an introduction. Wiley

  20. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Model 24:359–373

  21. Tsuji Y, Hirayama K, Nomura T, Sato K, Nishiwaki S (2006) Design of optical circuit devices based on topology optimization. IEEE photonics Technol Lett 18(5–8):850–852

  22. Turteltaub S (2001) Optimal material properties for transient problems. Struct Multidisc Optim 22(2):157–166

  23. Turteltaub S (2005) Optimal non-homogeneous composites for dynamic loading. Struct Multidisc Optim 30(2):101–112

  24. Zwyssig C, Kolar J (2006) Design considerations and experimental results of a 100 W, 500 000 rpm electrical generator. J Micromechanics Microengineering 16:297–302

Download references

Author information

Correspondence to Jonas Dahl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dahl, J., Jensen, J.S. & Sigmund, O. Topology optimization for transient wave propagation problems in one dimension. Struct Multidisc Optim 36, 585–595 (2008). https://doi.org/10.1007/s00158-007-0192-5

Download citation

Keywords

  • Topology optimization
  • Transient problems
  • Adjoint sensitivity analysis
  • Wave propagation
  • Filters