Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Homogeneity in relatively free groups

  • 69 Accesses

  • 2 Citations

Abstract

We prove that any torsion-free, residually finite relatively free group of infinite rank is not \({\aleph_1}\) -homogeneous. This generalizes Sklinos’ result that a free group of infinite rank is not \({\aleph_1}\) -homogeneous, and, in particular, gives a new simple proof of that result.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Fuchs, L.: Infinite abelian groups. Vol. I. Pure and Applied Mathematics, vol. 36. Academic Press, New York, London (1970)

  2. 2

    Hodges W.: Model Theory. Encyclopedia of Mathematics and its Applications, vol. 42. Cambridge University Press, Cambridge (1993)

  3. 3

    Ivanov S.V., Storozhev A.M.: Non-hopfian relatively free groups. Geom. Dedic. 114, 209–228 (2005)

  4. 4

    Kharlampovich O., Myasnikov A.: Elementary theory of free non-abelian groups. J. Algebra 302, 451–552 (2006)

  5. 5

    Neumann H.: Variety of Groups. Springer, New York (1967)

  6. 6

    Ould Houcine A.: Homogeneity and prime models in torsion-free hyperbolic groups. Conflu. Math. 3, 121–155 (2011)

  7. 7

    Ould Houcine, A., Vallino, D.: Algebraic and definable closure in free groups. ArXiv–Mathematics http://arxiv.org/pdf/1108.5641.pdf. 29 Aug 2011

  8. 8

    Perin, C.: Elementary embeddings in torsion-free hyperbolic groups. ArXiv–Mathematics http://arxiv.org/pdf/0903.0945.pdf. 25 Aug 2010.

  9. 9

    Perin, C., Sklinos, R.: Homogeneity in the free group. ArXiv–Mathematics http://arxiv.org/pdf/1003.4095.pdf. 22 March 2010

  10. 10

    Sela Z.: Diophantine geometry over groups. VI. The elementary theory of a free group. Geom. Funct. Anal. 16, 707–730 (2006)

  11. 11

    Sela, Z.: Diophantine geometry over groups. VIII. Stability. ArXiv–Mathematics http://arxiv.org/pdf/math/0609096v1.pdf. 4 Sept 2006

  12. 12

    Sklinos R.: On the generic type of the free group. J. Symb. Log. 76, 227–234 (2011)

Download references

Author information

Correspondence to Oleg Belegradek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Belegradek, O. Homogeneity in relatively free groups. Arch. Math. Logic 51, 781–787 (2012). https://doi.org/10.1007/s00153-012-0298-3

Download citation

Keywords

  • Group variety
  • Relatively free group
  • Homogeneous structure

Mathematics Subject Classification (2000)

  • 20E10
  • 03C50