Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Register computations on ordinals

  • 50 Accesses

  • 12 Citations


We generalize ordinary register machines on natural numbers to machines whose registers contain arbitrary ordinals. Ordinal register machines are able to compute a recursive bounded truth predicate on the ordinals. The class of sets of ordinals which can be read off the truth predicate satisfies a natural theory SO. SO is the theory of the sets of ordinals in a model of the Zermelo-Fraenkel axioms ZFC. This allows the following characterization of computable sets: a set of ordinals is ordinal register computable if and only if it is an element of Gödel’s constructible universe L.

This is a preview of subscription content, log in to check access.


  1. 1

    Bissell-Siders, R.: Ordinal computers. Eprint at: arXiv:math.LO/9804076 (1998)

  2. 2

    Cutland, N.J.: Computability: An Introduction to Recursive Function Theory. Perspectives in Mathematical Logic. Cambridge University Press, London (1980)

  3. 3

    Devlin K.: Constructibility. Perspectives in Mathematical Logic. Springer, Berlin (1984)

  4. 4

    Gödel K.: The Consistency of the Continuum Hypothesis. In: Annals of Mathematical Studies, vol. 3. Princeton University Press, Princeton (1940)

  5. 5

    Hamkins J.D., Lewis A.: Infinite time turing machines. J. Symb. Log. 65(2), 567–604 (2000)

  6. 6

    Jech, T.: Set Theory, The Third Millennium Edition. In: Springer Monographs in Mathematics. Springer, Heidelberg (2003)

  7. 7

    Koepke P.: Turing computations on ordinals. Bull. Symb. Log. 11(3), 377–397 (2005)

Download references

Author information

Correspondence to Peter Koepke.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koepke, P., Siders, R. Register computations on ordinals. Arch. Math. Logic 47, 529–548 (2008). https://doi.org/10.1007/s00153-008-0093-3

Download citation


  • Ordinal computability
  • Hypercomputation
  • Infinitary computation
  • Register machine

Mathematics Subject Classification (2000)

  • 03D60
  • 03E45