Advertisement

Unlucky to be young? The long-term effects of school starting age on smoking behavior and health

  • Michael BahrsEmail author
  • Mathias Schumann
Original Paper
  • 98 Downloads

Abstract

The literature on school entry laws has shown that relative school starting age affects smoking behavior and health in adolescence, yet it remains unclear whether these effects persist into adulthood. Filling this gap, we analyze the long-term effects of relative school starting age on smoking behavior and health in adulthood. This study employs a fuzzy regression discontinuity design, using school entry rules combined with birth month as an instrument for school starting age. The analysis adopts data from the German Socio-Economic Panel. The results reveal that an increase in relative school starting age significantly reduces the long-term risk of smoking, improves long-term health, and affects physical rather than mental health. Several robustness checks confirm these results. In addition, we present suggestive evidence that the relative age composition of peers and the school environment are important mechanisms.

Keywords

Smoking Health Education School starting age Regression discontinuity design 

Notes

Acknowledgements

We thank Thomas Siedler and Jan Marcus for beneficial discussions that improved this study. We further thank participants of the seminars at Universität Hamburg, Hamburg Center for Health Economics (HCHE), the 12th International German Socio-Economic Panel User Conference, and the 11th European Conference on Health Economics. We are grateful to three anonymous referees for their help and guidance.

Funding information

This study has received funding from the Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research), project “Nicht-monetäre Erträge von Bildung in den Bereichen Gesundheit, nicht-kognitive Fähigkeiten sowie gesellschaftliche und politische Partizipation.”

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. Andersen HH, Mühlbacher A, Nübling M, Schupp J, Wagner GG (2007) Computation of standard values for physical and mental health scale scores using the SOEP version of SF-12v2. Schmollers Jahrbuch 127(1):171–182Google Scholar
  2. Anderson PM, Butcher KF, Cascio EU, Schanzenbach DW (2011) Is being in school better? The impact of school on children’s BMI when starting age is endogenous. J Health Econ 30(5):977–986.  https://doi.org/10.1016/j.jhealeco.2011.06.002 CrossRefGoogle Scholar
  3. Anger S, Schnitzlein DD (2017) Cognitive skills, non-cognitive skills, and family background: evidence from sibling correlations. J Popul Econ 30(2):591–620.  https://doi.org/10.1007/s00148-016-0625-9 CrossRefGoogle Scholar
  4. Anger S, Kvasnicka M, Siedler T (2011) One last puff? Public smoking bans and smoking behavior. J Health Econ 30(3):591–601.  https://doi.org/10.1016/j.jhealeco.2011.03.003 CrossRefGoogle Scholar
  5. Angrist JD, Krueger AB (1991) Does compulsory school attendance affect schooling and earnings? Q J Econ 106(4):979–1014.  https://doi.org/10.2307/2937954 CrossRefGoogle Scholar
  6. Angrist JD, Pischke JS (2009) Mostly harmless econometrics: an empiricist’s companion. Princeton University Press, PrincetonCrossRefGoogle Scholar
  7. Argys LM, Rees DI (2008) Searching for peer group effects: a test of the contagion hypothesis. Rev Econ Stat 90(3):442–458CrossRefGoogle Scholar
  8. Bachmann CJ, Philipsen A, Hoffmann F (2017) ADHS in Deutschland: Trends in Diagnose und medikamentöser Therapie. Deutsches Ärzteblatt 114(9):141–148Google Scholar
  9. Barua R, Lang K (2016) School entry, educational attainment, and quarter of birth: a cautionary tale of a local average treatment effect. J Hum Capital 10 (3):347–376.  https://doi.org/10.1086/687599 CrossRefGoogle Scholar
  10. Bedard K, Dhuey E (2006) The persistence of early childhood maturity: international evidence of long-run age effects. Q J Econ 121(4):1437–1472Google Scholar
  11. Bernardi F (2014) Compensatory advantage as a mechanism of educational inequality: a regression discontinuity based on month of birth. Sociol Educ 87(2):74–88.  https://doi.org/10.1177/0038040714524258 CrossRefGoogle Scholar
  12. Biewen M, Tapalaga M (2017) Life-cycle educational choices in a system with early tracking and ‘second chance’ options. Econ Educ Rev 56:80–94.  https://doi.org/10.1016/j.econedurev.2016.11.008 CrossRefGoogle Scholar
  13. Black SE, Devereux PJ, Salvanes KG (2011) Too young to leave the nest? The effects of school starting age. Rev Econ Stat 93(2):455–467CrossRefGoogle Scholar
  14. Chassin L, Presson CC, Rose JS, Sherman SJ (1996) The natural history of cigarette smoking from adolescence to adulthood: demographic predictors of continuity and change. Health Psychol 15(6):478–484CrossRefGoogle Scholar
  15. Chorniy A, Kitashima L (2016) Sex, drugs, and ADHD: the effects of ADHD pharmacological treatment on teens’ risky behaviors. Labour Econ 43:87–105.  https://doi.org/10.1016/j.labeco.2016.06.014 CrossRefGoogle Scholar
  16. Dalsgaard S, Humlum MK, Nielsen HS, Simonsen M (2012) Relative standards in ADHD diagnoses: the role of specialist behavior. Econ Lett 117 (3):663–665.  https://doi.org/10.1016/j.econlet.2012.08.008 CrossRefGoogle Scholar
  17. Dhuey E, Lipscomb S (2008) What makes a leader? Relative age and high school leadership. Econ Educ Rev 27(2):173–183.  https://doi.org/10.1016/j.econedurev.2006.08.005 CrossRefGoogle Scholar
  18. Dobkin C, Ferreira F (2010) Do school entry laws affect educational attainment and labor market outcomes? Econ Educ Rev 29(1):40–54.  https://doi.org/10.1016/j.econedurev.2009.04.003 CrossRefGoogle Scholar
  19. Dustmann C, Puhani PA, Schönberg U (2017) The long-term effects of early track choice. Econ J 127(603):1348–1380.  https://doi.org/10.1111/ecoj.12419 CrossRefGoogle Scholar
  20. Eibich P (2015) Understanding the effect of retirement on health: mechanisms and heterogeneity. J Health Econ 43:1–12.  https://doi.org/10.1016/j.jhealeco.2015.05.001 CrossRefGoogle Scholar
  21. Eide ER, Showalter MH (2001) The effect of grade retention on educational and labor market outcomes. Econ Educ Rev 20(6):563–576.  https://doi.org/10.1016/S0272-7757(00)00041-8 CrossRefGoogle Scholar
  22. Elder TE, Lubotsky DH (2009) Kindergarten entrance age and children’s achievement: impacts of state policies, family background, and peers. J Hum Res 44 (3):641–683.  https://doi.org/10.3368/jhr.44.3.641 CrossRefGoogle Scholar
  23. Elder TE (2010) The importance of relative standards in ADHD diagnoses: evidence based on exact birth dates. J Health Econ 29(5):641–656.  https://doi.org/10.1016/j.jhealeco.2010.06.003 CrossRefGoogle Scholar
  24. Evans WN, Morrill MS, Parente ST (2010) Measuring inappropriate medical diagnosis and treatment in survey data: the case of ADHD among school-age children. J Health Econ 29(5):657–673.  https://doi.org/10.1016/j.jhealeco.2010.07.005 CrossRefGoogle Scholar
  25. Fertig M, Kluve J (2005) The effect of age at school entry on educational achievement in Germany. IZA Discussion Paper Series 1507Google Scholar
  26. Fletcher J, Kim T (2016) The effects of changes in kindergarten entry age policies on educational achievement. Econ Educ Rev 50:45–62.  https://doi.org/10.1016/j.econedurev.2015.11.004 CrossRefGoogle Scholar
  27. Fredriksson P, Öckert B (2014) Life-cycle effects of age at school start. Econ J 124(579):977–1004CrossRefGoogle Scholar
  28. Gaviria A, Raphael S (2001) School-based peer effects and juvenile behavior. Rev Econ Stat 83(2):257–268CrossRefGoogle Scholar
  29. Godard M (2016) Gaining weight through retirement? Results from the SHARE survey. J Health Econ 45:27–46.  https://doi.org/10.1016/j.jhealeco.2015.11.002 CrossRefGoogle Scholar
  30. Graue ME, DiPerna J (2000) Redshirting and early retention: who gets the ‘gift of time’ and what are its outcomes? Am Educ Res J 37(2):509–534.  https://doi.org/10.3102/00028312037002509 CrossRefGoogle Scholar
  31. Grobe TG, Bitzer EM, Schwartz FW (2013) Schwerpunkt: Aufmerksamkeitsdefizit-/Hyperaktivitätsstörungen: ADHS, Barmer-GEK-Arztreport, Schriftenreihe zur Gesundheitsanalyse, vol 18. SiegburgGoogle Scholar
  32. Gruber J, Zinman J (2000) Youth smoking in the U.S.: evidence and implications. NBER Working Paper 7780, National Bureau of Economic ResearchGoogle Scholar
  33. Hahn J, Todd P, WVd Klaauw (2001) Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica 69(1):201–209.  https://doi.org/10.2307/2692190 CrossRefGoogle Scholar
  34. Hölling H, Schlack R, Kamtsiuris P, Butschalowsky H, Schlaud M, Kurth BM (2012) Die KiGGS-Studie: Bundesweit repräsentative Längs- und Querschnittstudie zur Gesundheit von Kindern und Jugendlichen im Rahmen des Gesundheitsmonitorings am Robert Koch-Institut. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 55(6-7):836–842.  https://doi.org/10.1007/s00103-012-1486-3 CrossRefGoogle Scholar
  35. Imbens GW, Lemieux T (2008) Regression discontinuity designs: a guide to practice. J Econ 142(2):615–635.  https://doi.org/10.1016/j.jeconom.2007.05.001 CrossRefGoogle Scholar
  36. Jürges H, Schneider K (2007) What can go wrong will go wrong: birthday effects and early tracking in the German school system. CESifo Working Paper 2055Google Scholar
  37. Jürges H, Reinhold S, Salm M (2011) Does schooling affect health behavior? Evidence from the educational expansion in Western Germany. Econ Educ Rev 30 (5):862–872.  https://doi.org/10.1016/j.econedurev.2011.04.002 CrossRefGoogle Scholar
  38. Landersø R, Nielsen HS, Simonsen M (2016) School starting age and the crime-age profile. Econ J 127(602):1096–1118.  https://doi.org/10.1111/ecoj.12325 CrossRefGoogle Scholar
  39. Lee DS, Lemieux T (2010) Regression discontinuity designs in economics. J Econ Lit 48(2):281–355CrossRefGoogle Scholar
  40. Lubotsky D, Kaestner R (2016) Do ‘skills beget skills’? Evidence on the effect of kindergarten entrance age on the evolution of cognitive and non-cognitive skill gaps in childhood. Econ Educ Rev 53:194–206.  https://doi.org/10.1016/j.econedurev.2016.04.001 CrossRefGoogle Scholar
  41. Manski CF (1993) Identification of endogenous social effects: the reflection problem. Rev Econ Stud 60(3):531–542.  https://doi.org/10.2307/2298123 CrossRefGoogle Scholar
  42. Manski CF (1995) Identification problems in the social sciences. Cambridge, Harvard University PressGoogle Scholar
  43. Marcus J (2013) The effect of unemployment on the mental health of spouses – evidence from plant closures in Germany. J Health Econ 32(3):546–558.  https://doi.org/10.1016/j.jhealeco.2013.02.004 CrossRefGoogle Scholar
  44. McAdams JM (2016) The effect of school starting age policy on crime: evidence from U.S. microdata. Econ Educ Rev 54:227–241.  https://doi.org/10.1016/j.econedurev.2014.12.001 CrossRefGoogle Scholar
  45. McEwan PJ, Shapiro JS (2008) The benefits of delayed primary school enrollment: discontinuity estimates using exact birth dates. J Hum Res 43(1):1–29CrossRefGoogle Scholar
  46. Morrow RL, Garland EJ, Wright JM, Maclure M, Taylor S, Dormuth CR (2012) Influence of relative age on diagnosis and treatment of attention-deficit/hyperactivity disorder in children. Can Med Assoc J 184(7):755–762.  https://doi.org/10.1503/cmaj.111619 CrossRefGoogle Scholar
  47. Mühlenweg A, Puhani PA (2010) The evolution of the school-entry age effect in a school tracking system. J Hum Res 45(2):407–438CrossRefGoogle Scholar
  48. Mühlenweg A, Blomeyer D, Stichnoth H, Laucht M (2012) Effects of age at school entry (ASE) on the development of non-cognitive skills: evidence from psychometric data. Econ Educ Rev 31(3):68–76.  https://doi.org/10.1016/j.econedurev.2012.02.004 CrossRefGoogle Scholar
  49. Nam K (2014) Until when does the effect of age on academic achievement persist? Evidence from Korean data. Econ Educ Rev 40:106–122.  https://doi.org/10.1016/j.econedurev.2014.02.002 CrossRefGoogle Scholar
  50. Norton EC, Lindrooth RC, Ennett ST (1998) Controlling for the endogeneity of peer substance use on adolescent alcohol and tobacco use. Health Econ 7(5):439–453CrossRefGoogle Scholar
  51. Peña P A (2017) Creating winners and losers: date of birth, relative age in school, and outcomes in childhood and adulthood. Econ Educ Rev 56:152–176.  https://doi.org/10.1016/j.econedurev.2016.12.001 CrossRefGoogle Scholar
  52. Pfeifer G, Reutter M, Strohmaier K (2017) Goodbye smokers’ corner: health effects of school smoking bans. Ruhr Economic, Papers, 678.  https://doi.org/10.4419/86788786
  53. Powell LM, Tauras JA, Ross H (2005) The importance of peer effects, cigarette prices and tob control policies for youth smoking behavior. J Health Econ 24(5):950–968CrossRefGoogle Scholar
  54. Puhani PA, Weber AM (2007) Does the early bird catch the worm? Instrumental variable estimates of early educational effects of age of school entry in Germany. Empir Econ 32(2-3):359–386CrossRefGoogle Scholar
  55. Robertson E (2011) The effects of quarter of birth on academic outcomes at the elementary school level. Econ Educ Rev 30(2):300–311.  https://doi.org/10.1016/j.econedurev.2010.10.005 CrossRefGoogle Scholar
  56. Sacerdote B (2011) Peer effects in education: how might they work, how big are they and how much do we know thus far?. In: Hanushek E A, Machin S, Woessmann L (eds) Handb econ educ, vol 3. Elsevier, pp 249–277Google Scholar
  57. Salyers MP, Bosworth HB, Swanson JW, Lamb-Pagone J, Osher FC (2000) Reliability and validity of the SF-12 health survey among people with severe mental illness. Med Care 38(11):1141–1150CrossRefGoogle Scholar
  58. Schwandt H, Wuppermann A (2016) The youngest get the pill: ADHD misdiagnosis in Germany, its regional correlates and international comparison. Labour Econ 43:72–86.  https://doi.org/10.1016/j.labeco.2016.05.018 CrossRefGoogle Scholar
  59. Staiger D, Stock JH (1997) Instrumental variables regression with weak instruments. Econometrica 65(3):557–586.  https://doi.org/10.2307/2171753 CrossRefGoogle Scholar
  60. Statistisches Bundesamt (2014) Mikrozensus - Fragen zur Gesundheit - Rauchgewohnheiten der Bevölkerung, Publikationen im Bereich Gesundheitszustand. Statistisches Bundesamt, WiesbadenGoogle Scholar
  61. Stipek D (2002) At what age should children enter kindergarten? A question for policy makers and parents. SRCD Social Policy Report 16(2):1–19Google Scholar
  62. Tan PL (2017) The impact of school entry laws on female education and teenage fertility. J Popul Econ 30(2):503–536.  https://doi.org/10.1007/s00148-016-0609-9 CrossRefGoogle Scholar
  63. US Department of Health and Human Services (2012) Preventive tobacco use among youth and young adults: a report of the Surgeon General. Report, Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion Office on Smoking and Health, Atlanta, GAGoogle Scholar
  64. Wacker M, Holle R, Heinrich J, Ladwig KH, Peters A, Leidl R, Menn P (2013) The association of smoking status with healthcare utilisation, productivity loss and resulting costs: results from the population-based KORA F4 study. BMC Health Serv Res 13:278.  https://doi.org/10.1186/1472-6963-13-278 CrossRefGoogle Scholar
  65. Wagner GG, Frick JR, Schupp J (2007) The German Socio-economic Panel Study (SOEP) — scope, evolution and enhancements. Schmollers Jahrbuch: Z Wirtschafts Sozialwissenschaften/J Appl Soc Sci Stud 127(1):139–169Google Scholar
  66. Ware JEJ, Kosinski MM, Keller SD (1996) A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med Care 34(3):220–233CrossRefGoogle Scholar
  67. WHO (2015a) WHO global report on trends in prevalence of tobacco smoking 2015. World Health OrganizationGoogle Scholar
  68. WHO (2015b) WHO report on the global tobacco epidemic, 2015: raising taxes on tobacco. World Health OrganizationGoogle Scholar
  69. Xu X, Bishop EE, Kennedy SM, Simpson SA, Pechacek TF (2015) Annual healthcare spending attributable to cigarette smoking: an update. Am J Prev Med 48(3):326–333.  https://doi.org/10.1016/j.amepre.2014.10.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fakultät für Wirtschafts- und SozialwissenschaftenUniversität HamburgHamburgGermany

Personalised recommendations