Advertisement

Sprunggelenkendoprothetik

  • L. Achenbach
  • T. Buchhorn
  • C. HankEmail author
Leitthema
  • 4 Downloads

Zusammenfassung

Die aktuelle Sprunggelenkprothetik besitzt moderne Konzepte und Typen von Endoprothesen, die sich deutlich von den Modellen der ersten Generation unterscheiden. Insbesondere die Berücksichtigung der patientenindividualisierten Anatomie und Biomechanik spielt eine immer wichtigere Rolle für die Konzepte der modernen Prothesen und der Implantationstechnik. Die Bewegung des Sprunggelenks ist eine komplexe Roll-Gleit-Bewegung, die eine wechselnde Position der Rotationsachse innehat. Während die ersten Prothesengenerationen das Sprunggelenk als Scharniergelenk imitiert haben und die mechanische Führung der Bewegung komplett vorgaben, zeigen neue Techniken, wie die Integration eines mobilen Gleitkerns und die Berücksichtigung der isometrischen Spannung der Seitenbänder, dass Sprunggelenkprothesen auch individualisiert nach anatomischen Gesichtspunkten implantiert werden können. Das klinische Ergebnis und die Langlebigkeit von Sprunggelenkendoprothesen sind von einer Vielzahl unterschiedlicher Faktoren abhängig, die es schwer machen, direkte Vergleiche oder Rückschlüsse zu ziehen. In diesem Beitrag soll dennoch Aufklärung darüber gegeben und auf möglichst alle diese Faktoren eingegangen werden. Schwierigkeiten stellen sich insbesondere bei der Revisionschirurgie dar, da hier meist die primären Modelle zur Revisionsprothetik verwendet werden müssen.

Schlüsselwörter

Anatomie Biomechanik Design Schmerzreduktion Gelenkfunktion 

Ankle joint endoprostheses

Abstract

The current total ankle replacement procedure involves modern concepts and types of prosthesis that clearly differ from the models of the first generation. In particular, consideration of the individual patient anatomy and biomechanics plays a more important role in the concepts of modern prosthesis and implantation techniques. The movement of the ankle joint is a complex rolling-gliding motion that has a changing rotational axis. While the first generations of total ankle replacement prosthetics imitated the ankle as a hinge-like joint and mechanically determined the ankle movement, new techniques, such as the integration of a floating bearing element and consideration of the isometric tension of the collateral ligaments, demonstrate that total ankle prostheses can be implanted taking the individual patient anatomy into consideration. The clinical results and longevity of total ankle replacements depend on a multitude of different factors, which makes it difficult to make comparisons or to draw any conclusions. Nevertheless, in this article these aspects are elucidated and all these factors are discussed. Difficulties exist especially in revision surgery because in most cases the primary models of revision prosthetics must be used.

Keywords

Anatomy Biomechanics Design Pain reduction Joint function 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

L. Achenbach, T. Buchhorn und C. Hank geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Lundberg A, Goldie I, Kalin B, Selvik G (1989) Kinematics of the ankle/foot complex, part 1: Plantar flexion and dorsiflexion. Foot Ankle 9:194–200PubMedCrossRefGoogle Scholar
  2. 2.
    Macko VW, Matthews LS, Zwirkoski P (1991) The joint contact area of the ankle. J Bone Joint Surg Br 73:347–351CrossRefGoogle Scholar
  3. 3.
    Kim BS, Choi WJ, Kim YS, Lee JW (2009) Total ankle replacement in moderate to severe varus deformity of the ankle. J Bone Joint Surg Br 91:1183–1190PubMedCrossRefGoogle Scholar
  4. 4.
    Sammarco J (1977) Biomechanics of the ankle: surface velocity and instant center of rotation in the sagittal plane. Am J Sports Med 5:231–234PubMedCrossRefGoogle Scholar
  5. 5.
    Castro MD (2002) Ankle biomechanics. Foot Ankle Clin 7:679–693PubMedCrossRefGoogle Scholar
  6. 6.
    Michelsen JD, Ahn UM, Helgemo SL (1996) Motion of the ankle in a simulated supination-external rotation fracture model. J Bone Joint Surg Am 78:1024–1031PubMedCrossRefGoogle Scholar
  7. 7.
    Stormont DM, Morrey BF, An KN, Cass JR (1985) Stability of the loaded ankle. Am J Sports Med 13:295–300PubMedCrossRefGoogle Scholar
  8. 8.
    Leardini A, O’Connor JJ, Catani F, Giannini S (1999) A geometric model of the human ankle joint. J Biomech 32(6):585–591PubMedCrossRefGoogle Scholar
  9. 9.
    Benedetti MG, Catani F, Leardini A et al (1998) Data management in gait analysis for clinical applications. Clin Biomech 13:204–215CrossRefGoogle Scholar
  10. 10.
    Procter P, Paul JP (1982) Ankle joint biomechanics. J Biomech 15:627–634PubMedCrossRefGoogle Scholar
  11. 11.
    Stauffer RN, Chao EYS, Brewster RC (1977) Force and motion analysis of the normal, diseased, and prosthetic ankle joint. Clin Orthop Relat Res 127:189–196Google Scholar
  12. 12.
    Kimizuka M, Kurosawa H, Fukubayashi T (1980) Load-bearing pattern of the ankle joint. Contact area and pressure distribution. Arch Orthop Trauma Surg 96:45–49PubMedCrossRefGoogle Scholar
  13. 13.
    Bauer G, Eberhardt O, Rosenbaum D et al (1996) Total ankle replacement. Review and critical analysis of the current status. Foot Ankle Surg 2:119–126CrossRefGoogle Scholar
  14. 14.
    Dini AA, Bassett FH (1980) Evaluation of the early result of smith total ankle replacement. Clin Orthop 146:228–230Google Scholar
  15. 15.
    Newton E (1982) Total ankle arthroplasty: a clinical study of fifty cases. J Bone Joint Surg Am 64:104–111PubMedCrossRefGoogle Scholar
  16. 16.
    Lord G, Marotte JH (1980) L’arthroplastie totale de cheville. experience sur 10 ans, apropos de 25 observation personelle. Rev Chir Orthop Reparatrice Appar Mot 66:527–530PubMedGoogle Scholar
  17. 17.
    Deland JT, Morris GD, Sung IH (2000) Biomechanics of the ankle joint. A perspective on total ankle replacement. Foot Ankle Clin 5:747–759PubMedGoogle Scholar
  18. 18.
    Goodfellow J, O’Connor J (1978) The mechanics of the knee and prosthesis design. J Bone Joint Surg Br 60B:358–369CrossRefGoogle Scholar
  19. 19.
    Giannini S, Leardini A, Connor JJ (2000) Total ankle replacement: review of the designs and of the current status. Foot Ankle Surg 6:77–88CrossRefGoogle Scholar
  20. 20.
    Hintermann B, Valderrabano V (2003) Total ankle replacement. Foot Ankle Clin 8:375–405PubMedCrossRefGoogle Scholar
  21. 21.
    Cameron HU, Pilliar RM, Macnab I (1976) The rate of bone ingrowth into porous metal. J Biomed Mater Res 10:295–302PubMedCrossRefGoogle Scholar
  22. 22.
    Makwana NK, Morrison P, Jones CB et al (1995) Salvage operations after failed total ankle replacement. Foot 5:180–184CrossRefGoogle Scholar
  23. 23.
    Anderson T, Montgomery F, Carlsson A (2013) Uncemented STAR total ankle prostheses. Three to eight-year follow-up of fifty-one consecutive ankles. J Bone Joint Surg Am 85-A:1321–1329Google Scholar
  24. 24.
    Arcangelo J, Guerra-Pinto F, Pinto A, Grenho A, Navarro A, Oliva MX (2019) Peri-prosthetic bone cysts after total ankle replacement. A systematic review and meta-analysis. Foot Ankle Surg 25(2):96-105.  https://doi.org/10.1016/j.fas.2017.11.002. (Epub 2017 Nov 29)CrossRefPubMedGoogle Scholar
  25. 25.
    Barg A, Saltzman CL (2014) Mann’s surgery of the foot and ankle (9. Ausg.). Elsevier Saunders, PhiladelphiaGoogle Scholar
  26. 26.
    Barg A, Elsner A, Anderson A, Hintermann B (2011) The effect of three-component total ankle replacement malalignement on clinical outcome: pain relief and functional outcome in 317 consecutive patients. J Bone Joint Surg Am 93(21):1969–1978.  https://doi.org/10.2106/JBJS.J.01415 CrossRefPubMedGoogle Scholar
  27. 27.
    Barg A, Knupp M, Anderson A, Hintermann B (2011) Total ankle replacement in obese patients: component stability, weight change and functional outcome in 118 consecutiv patients. Root Ankle Int 32(10):925–932CrossRefGoogle Scholar
  28. 28.
    Barg A, Wimmer MD, Wiewiorski M, Wirtz DC, Pagenstert GI, Valderrabano V (2015) Total ankle replacement—indications, implant designs, and results. Dtsch Arztebl Int 112:177–184.  https://doi.org/10.3238/arztebl.2015.0177 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Barg A, Zwicky L, Knupp M, Henninger H, Hintermann B (2013) HINTEGRA total ankle replacement: survivorship analysis in 648 patients. J Bone Joint Surg Am 95(13):1175–1183PubMedCrossRefGoogle Scholar
  30. 30.
    Espinosa N, Walti M, Favre P, Snedeker J (2010) Misalignement of total ankle components can induce high joint contact pressures. J Bone Joint Surg Am 92:1179–1187PubMedCrossRefGoogle Scholar
  31. 31.
    Fukuda T, Haddad S, Ren Y, Zhang L (2010) Impact of talar component rotation on contact pressure after total ankle arthroplasty: a cadaveric study. Foot Ankle Int 31:404–411PubMedCrossRefGoogle Scholar
  32. 32.
    Graves S (2017) Australian Orthopaedic Association national joint replacement registry. Annual ReportGoogle Scholar
  33. 33.
    Huskisson E (1974) Measurement of pain. Lancet 2:1127–1131PubMedCrossRefGoogle Scholar
  34. 34.
    Kitaoka H, Alexander I, Adelaar R, Nunley J, Myerson M, Sanders M (1994) Clinical rating systems for the ankle-hindfoot, midfoot, hallux and lesser toes. Foot Ankle Int 15:349–353PubMedCrossRefGoogle Scholar
  35. 35.
    Kofoed H (1995) Cylindrical cemented ankle arthroplasty: A prospective series with long-term follow-up. Foot Ankle Int 16:474–479PubMedCrossRefGoogle Scholar
  36. 36.
    Labek G, Thaler M, Janda W, Agreiter M, Stockl B (2011) Revsion rates after total joint replacement: cumulative results from worldwide joint register datasets. J Bone Joint Surg Br 93:293–297PubMedCrossRefGoogle Scholar
  37. 37.
    Lee K, Cho S, Hur C, Yoon T (2008) Perioperative complications of Hintegra total ankle replacement: Our initial 50 cases. Foot Ankle Int 29:978–984PubMedCrossRefGoogle Scholar
  38. 38.
    Lee K, Lee Y, Young K, Kim J, Seo Y (2013) Perioperative complications and learning curve of the mobility total ankle system. Foot Ankle Int 34:210–214PubMedCrossRefGoogle Scholar
  39. 39.
    Lee K, Lee Y, Young K, Kim J, Seo Y (2010) Perioperative complications of the MOBILITY total ankle system: Comparison with the HITEGRA total ankle system. J Orthop 15:317–322Google Scholar
  40. 40.
    Myerson M, Mrocek K (2003) Perioperative complications of total ankle arthroplasty. Foot Ankle Int 24:17–21PubMedCrossRefGoogle Scholar
  41. 41.
    Naal F, Impellizzeri F, Rippstein P (2010) Which are the most frequently used outcome instruments in studies on total ankle arthroplasty? Clin Orthop Realt Res 468:815–826CrossRefGoogle Scholar
  42. 42.
    Pinar N, Vernet E, Bizot P, Brilhault J (2012) Total ankle arthroplasty—total ankle arthroplasty in Western France: influence of volume on complications and clinical outcome. Orthop Traumatol Surg Res 98:26–30CrossRefGoogle Scholar
  43. 43.
    Saltzman C, Amendola A, Anderson R et al (2003) Surgeon training and complications in total ankle arthroplasty. Foot Ankle Int 24:514–518PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Saltzman C, Mann R, Ahrens J (2009) Prospective controlled trial of STAR total ankle replacement versus ankle fusion: initial results. Foot Ankle Int 30:579–596PubMedCrossRefGoogle Scholar
  45. 45.
    Saltzman C, Tochigi Y, Rudert M, McIff T, Brown T (2004) The effect of agility ankle prosthesis misalignment on the peri-ankle ligaments. Clin Orthop Relat Res 424:137–142CrossRefGoogle Scholar
  46. 46.
    Sansosti L, Van J, Meyr A (2018) Effect of obesity on total ankle arthroplasty: a systematic review of postoperative complicatins. J Foot Ankle Surg 57(2):353–356PubMedCrossRefGoogle Scholar
  47. 47.
    Schenk K, Lieske S, John M et al (2011) Prospective study of a ccementless, mobile-bearing, third generation total ankle prosthesis. Foot Ankle Int 32:755–763PubMedCrossRefGoogle Scholar
  48. 48.
    Schuberth J, Patel S, Zarutsky E (2006) Perioperative complications of the Agility total ankle replacement in 50 Initial, consecutie cases. J Foot Ankle Surg 45:139–146PubMedCrossRefGoogle Scholar
  49. 49.
    Tochigi Y, Rudert M, Brown T, MCIff T, Saltzman C (2005) The effect of accuracy of implantation on range of movement of the Scandinavian total ankle replacement. J Bone Joint Surg Br 87:736–740PubMedCrossRefGoogle Scholar
  50. 50.
    Vienne P, Nothdurft P (2004) OSG-Totalendoprothese Agility: Indikationen, Operationstechnik und Ergebnisse. Fuss Sprungg 2:17–28CrossRefGoogle Scholar
  51. 51.
    Wood P, Prem H, Sutton C (2008) Total ankle replacement: Medium-term results in 200 Scandinavian total ankle replacements. J Bone Joint Surg Br 90:605–609PubMedCrossRefGoogle Scholar
  52. 52.
    Zaidi R, Cro S, Gurusamy K et al (2013) The outcome of total ankle replacement: A systematic review and meta-analysis. Bone Joint J 95:1500–1507PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Sporthopaedicum Regensburg-StraubingRegensburgDeutschland
  2. 2.ARCUS Kliniken PforzheimPforzheimDeutschland

Personalised recommendations