Advertisement

A novel method for breast mass segmentation: from superpixel to subpixel segmentation

  • Shenghua Gu
  • Yi Chen
  • Fangqing Sheng
  • Tianming ZhanEmail author
  • Yunjie Chen
Special Issue Paper
  • 92 Downloads
Part of the following topical collections:
  1. Special Issue on Deep Learning Methods for Biomedical Information Analysis

Abstract

In this paper, an effective method is proposed for breast mass segmentation using a superpixel generation and curve evolution method. The simple linear iterative clustering method and density-based spatial clustering of applications with noise method are applied to generate superpixels in mammograms at first. Thereafter, a region of interesting (ROI) that contains the breast mass is built on the superpixel generation results. Finally, the image patch and the position of the manual labeled seed are used to build the prior knowledge for the level set method driven by the local Gaussian distribution fitting energy and evolve the curve to capture the edge of breast mass in ROI. Experimental results on mammogram data set demonstrate that the proposed method shows superior performance in contrast to some well-known methods in breast mass segmentation.

Keywords

Breast mass segmentation Superpixel Level set method Local Gaussian distribution fitting 

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of High Education Institutions of Jiangsu Province, China (Nos. 18KJB50030, 18KJB520042 and 17KJB520033), the National Natural Science Foundation of China under grants (Nos. 61502206, 61772277, and 61672291), the Nature Science Foundation of Jiangsu Province under grants (Nos. BK20150523 and BK20171494). The authors would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

  1. 1.
    DeSantis, C., Ma, J., Bryan, L., et al.: Breast cancer statistics, 2013. CA Cancer J. Clin. 64(1), 52–62 (2014)Google Scholar
  2. 2.
    Harbeck, N., Gnant, M.: Breast cancer. Radiol. Clin. North Am. 21(1), 51–65 (2016)Google Scholar
  3. 3.
    Murkies, A., Dalais, F.S., Briganti, E.M., et al.: Phytoestrogens and breast cancer in postmenopausal women: a case control study. Menopause-the J. North Am. Menopause Soc. 7(5), 289 (2016)Google Scholar
  4. 4.
    Veronese, S.M., Gambacorta, M., Gottardi, O., et al.: Proliferation index as a prognostic marker in breast cancer. Cancer 71(12), 3926–3931 (2015)Google Scholar
  5. 5.
    Klemm, M., Craddock, I.J., Preece, A., et al.: Evaluation of a hemi-spherical wideband antenna array for breast cancer imaging. Radio Sci. 43(6), 1–15 (2016)Google Scholar
  6. 6.
    Bower, J.E., Ganz, P.N.: Altered cortisol response to psychologic stress in breast cancer survivors with persistent fatigue. Psychosom. Med. 67(2), 277–280 (2016)Google Scholar
  7. 7.
    Song, H., Ramus, S.J., Kjaer, S.K., et al.: Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study. Hum. Mol. Genet. 18(12), 2297–2304 (2016)Google Scholar
  8. 8.
    Brown, R.S., Wahl, R.L.: Overexpression of Glut-1 glucose transporter in human breast cancer. An Immunohistochem. Study. Cancer 72(10), 2979–2985 (2015)Google Scholar
  9. 9.
    Rouhi, R., Jafari, M., Kasaei, S., et al.: Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst. Appl. 42(3), 990–1002 (2015)Google Scholar
  10. 10.
    Dong, Z., Yu, L., Yan, Y., et al.: A region-based segmentation method for ultrasound images in HIFU therapy. Med. Phys. 43(6), 2975–2989 (2016)Google Scholar
  11. 11.
    Shi, C., Cheng, Y., Liu, F., et al.: A hierarchical local region-based sparse shape composition for liver segmentation in CT scans. Pattern Recognit. 50(C), 88–106 (2016)Google Scholar
  12. 12.
    Li, D., Zang, P., Chai, X., et al.: Automatic multiorgan segmentation in CT images of the male pelvis using region-specific hierarchical appearance cluster models. Med. Phys. 43(10), 5426 (2016)Google Scholar
  13. 13.
    Hao, L., Zhang, S., Rui, M., et al.: Ultrasound intima-media thickness measurement of the carotid artery using ant colony optimization combined with a curvelet-based orientation-selective filter. Med. Phys. 43(4), 1795 (2016)Google Scholar
  14. 14.
    Javaid, Z., Boocock, M.G., Mcnair, P.J., et al.: Contour interpolated radial basis functions with spline boundary correction for fast 3D reconstruction of the human articular cartilage from MR images. Med. Phys. 43(3), 1187 (2016)Google Scholar
  15. 15.
    Phellan, R., Falcão, A.X., Udupa, J.K.: Medical image segmentation via atlases and fuzzy object models: improving efficacy through optimum object search and fewer models. Med. Phys. 43(1), 401 (2016)Google Scholar
  16. 16.
    Namías, R., D’Amato, J.P., Del, F.M., et al.: Multi-object segmentation framework using deformable models for medical imaging analysis. Med. Biol. Eng. Compu. 54(8), 1181–1192 (2016)Google Scholar
  17. 17.
    Wang, S., Lan, D.I., Liang, J.: Multi-dimensional fuzzy clustering image segmentation algorithm based on kernel metric and local information. Electron. Lett. 51(9), 693–695 (2015)Google Scholar
  18. 18.
    Dong, L., Smyl, D., Du, J.: A parametric level set based approach to difference imaging in electrical impedance tomography. IEEE Trans. Med. Imaging 38(1), 145–155 (2018)Google Scholar
  19. 19.
    Feng, Y., Dong, F., Xia, X., et al.: An adaptive Fuzzy C-means method utilizing neighboring information for breast tumor segmentation in ultrasound images. Med. Phys. 44(7), 3752 (2017)Google Scholar
  20. 20.
    Chen, Y., Zhang, H., Zheng, Y., et al.: An improved anisotropic hierarchical fuzzy c-means method based on multivariate student t-distribution for brain MRI segmentation. Pattern Recognit. 60(C), 778–792 (2016)Google Scholar
  21. 21.
    Dong, X., Shen, J., Shao, L., et al.: Sub-Markov random walk for image segmentation. IEEE Trans. Image Process. 25(2), 516–527 (2016)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Zhang, Y.D., Muhammad, K., Tang, C.: Twelve-layer deep convolutional neural network with stochastic pooling for tea category classification on GPU platform. Multimedia Tools Appl. 77(17), 22821–22839 (2018)Google Scholar
  23. 23.
    Zhang, Y.D., Zhang, Y., Hou, X.X., et al.: Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimedia Tools Appl. 77(9), 10521–10538 (2017)Google Scholar
  24. 24.
    Wang, G., Li, W., Zuluaga, M.A., et al.: Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Trans. Med. Imaging 37(7), 1562–1573 (2018)Google Scholar
  25. 25.
    Zhang, Y.D., Pan, C.C., Sun, J.D., et al.: Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. J. Comput. Sci. 28, 1–10 (2018)MathSciNetGoogle Scholar
  26. 26.
    Zhan, T., Yu, R., Zheng, Y., et al.: Multimodal spatial-based segmentation framework for white matter lesions in multi-sequence magnetic resonance images. Biomed. Signal Process. Control 31, 52–62 (2017)Google Scholar
  27. 27.
    Annegreet, V.O., Achterberg, H.C., Vernooij, M.W., et al.: Transfer learning for image segmentation by combining image weighting and kernel learning. IEEE Trans. Med. Imaging 38(1), 213–224 (2019)Google Scholar
  28. 28.
    Sun, Z., Qiao, Y., Lelieveldt, B.P.F., et al.: Integrating spatial-anatomical regularization and structure sparsity into SVM: improving interpretation of Alzheimer’s disease classification. Neuroimage 178, 445 (2014)Google Scholar
  29. 29.
    Zhang, Y.D., Zhao, G., Sun, J., et al.: Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm. Multimedia Tools Appl. 77(17), 22629–22648 (2018)Google Scholar
  30. 30.
    Tao, Y., Lo, S.C.B., Freedman, M.T., et al.: Multilevel learning-based segmentation of ill-defined and spiculated masses in mammograms. Med. Phys. 37(11), 5993–6002 (2010)Google Scholar
  31. 31.
    Berber, T., Alpkocak, A., Balci, P., et al.: Breast mass contour segmentation algorithm in digital mammograms. Comput. Methods Programs Biomed. 110(2), 150–159 (2013)Google Scholar
  32. 32.
    Song, E., Jiang, L., Jin, R., et al.: Breast mass segmentation in mammography using plane fitting and dynamic programming. Acad. Radiol. 16(7), 826–835 (2009)Google Scholar
  33. 33.
    Wang, X., Guo, Y., Wang, Y., et al.: Automatic breast tumor detection in ABVS images based on convolutional neural network and superpixel patterns. Neural Comput. Appl. 1–13 (2017)Google Scholar
  34. 34.
    Kallenberg, M., Petersen, K., Nielsen, M., et al.: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35(5), 1322–1331 (2016)Google Scholar
  35. 35.
    Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)Google Scholar
  36. 36.
    Ester, M., Kriegel, H.P., Sander, J., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96(34), 226–231 (1996)Google Scholar
  37. 37.
    Wang, L., He, L., Mishra, A., et al.: Active contours driven by local Gaussian distribution fitting energy. Sig. Process. 89(12), 2435–2447 (2009)zbMATHGoogle Scholar
  38. 38.
    Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR IEEE, vol. 2, 60–65 (2005)Google Scholar
  39. 39.
    Nguyen, T.M., Wu, Q.M.J.: Fast and robust spatially constrained gaussian mixture model for image segmentation. IEEE Trans. Circuits Syst. Video Technol. 23(4), 621–635 (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shenghua Gu
    • 1
  • Yi Chen
    • 2
    • 3
  • Fangqing Sheng
    • 4
    • 5
  • Tianming Zhan
    • 6
    Email author
  • Yunjie Chen
    • 7
  1. 1.School of Computer and SoftwareNanjing University of Information Science and TechnologyNanjingChina
  2. 2.School of Computer Science and TechnologyNanjing Normal UniversityNanjingChina
  3. 3.Jiangsu Laboratory of Lake Environment Remote Sensing TechnologiesHuaiyin Institute of TechnologyHuaiyinChina
  4. 4.Faculty of Hospitality and Tourism ManagementMacau University of Science and TechnologyMacauChina
  5. 5.School of Humanity and ArtJiangsu Maritime InstituteNanjingChina
  6. 6.School of Information EngineeringNanjing Audit UniversityNanjingChina
  7. 7.School of Math and StatisticsNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations