Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A comparative experimental study of image feature detectors and descriptors

  • 1437 Accesses

  • 43 Citations

Abstract

Feature detection and matching is a fundamental problem in many computer vision applications. In the past decades, various types of feature detectors and descriptors have been proposed in the literature. Although several comparative studies on feature detectors and descriptors have been performed in the past, few studies have been carried out concerning recently proposed descriptors such as BRISK, FREAK, etc. Also, previous comparisons were either application oriented or limited in experimentation or in the number of detectors and descriptors compared. This paper provides a comprehensive review of a large number of popular feature detectors developed in the last three decades. The study makes several contributions to the development of a generic comparison of feature detectors and descriptors. First, we conduct comparisons of invariance against image transformations such as illumination changes, blurring, rotation, scaling, viewpoint changes, exposure, JPEG compression, combined scaling and rotation, and combined viewpoint changes. Second, we provide a proper distinction between detectors and descriptors using separate comparisons. Third, a few detectors have been tested on the variation of parameter values. Fourth, we conduct a statistical analysis of invariance against four popular types of transformations: viewpoint changes, blurring, scaling, and rotation. Fifth, we carry out intuitive matching between detectors and descriptors, testing on simulated and practical scenarios. Last, we conduct exhaustive experiments on several datasets for each combination of detectors and descriptors to provide a ranking that can also be weighted to suit specific applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Aanæs, H., Dahl, A., Steenstrup Pedersen, K.: Interesting interest points. Int. J. Comput. Vis. 97, 18–35 (2012)

  2. 2.

    Agrawal, M., Konolige, K., Blas, M.: CenSurE: center surround extremas for realtime feature detection and matching. In: Proceedings of European Conference on Computer Vision, pp. 102–115 (2008)

  3. 3.

    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517 (2012)

  4. 4.

    Bay, H., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. In: Proceedings of the European Conference on Computer Vision, pp. 404–417 (2006)

  5. 5.

    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Proceedings of the European Conference on Computer Vision, pp. 778–792 (2010)

  6. 6.

    Dahl, A.L., Aanæs, H., Pedersen, K.S.: Finding the best feature detector–descriptor combination. In: International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), pp. 318–325 (2011)

  7. 7.

    Feng, Y., Ren, J., Jiang, J., Halvey, M., Jose, J.: Effective venue image retrieval using robust feature extraction and model constrained matching for mobile robot localization. Mach. Vis. Appl. 23(5), 1011–1027 (2012)

  8. 8.

    Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P.: Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification. Mach. Vis. Appl. 22(6), 913–926 (2011)

  9. 9.

    Forstner, W.: A framework for low level feature extraction. In: Proceedings of the European Conference on Computer Vision, pp. 383–394 (1994)

  10. 10.

    Gao, J., Huang, X., Liu, B.: A quick scale-invariant interest point detecting approach. Mach. Vis. Appl. 21(3), 351–364 (2010)

  11. 11.

    Gauglitz, S., Höllerer, T., Turk, M.: Dataset and evaluation of interest point detectors for visual tracking. Technical Report, Department of Computer Science, University of California (2010)

  12. 12.

    Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: The Kitti vision benchmark suite. http://www.cvlibs.net/datasets/kitti/eval_odometry.php (2002). Accessed 12 March 2013

  13. 13.

    Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The Kitti vision benchmark suite. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2012)

  14. 14.

    Geusebroek, J.M., Burghouts, G., Smeulders, A.M.: The Amsterdam library of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005)

  15. 15.

    Gil, A., Mozos, O., Ballesta, M., Reinoso, O.: A comparative evaluation of interest point detectors and local descriptors for visual slam. Mach. Vis. Appl. 21(6), 905–920 (2010)

  16. 16.

    Govender, N.: Evaluation of feature detection algorithms for structure from motion. In: 3rd Robotics and Mechatronics Symposium (ROBMECH), pp. 1–4 (2009)

  17. 17.

    Goyette, N., Jodoin, P., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2012)

  18. 18.

    Hall, D., Leibe, B., Schiele, B.: Saliency of interest points under scale changes. In: British Mach. Vis. Conf., pp. 646–655 (2002)

  19. 19.

    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Alvey Vision Conference, pp. 147–151 (1988)

  20. 20.

    Heinly, J., Dunn, E., Frahm, J.M.: Comparative evaluation of binary features. In: Proceedings of European Conference on Computer Vision, pp. 759–773 (2012)

  21. 21.

    Heitger, F., Rosenthaler, L., von der Heydt, R., Peterhans, E., Kuebler, O.: Simulation of neural contour mechanism: from simple to end-stopped cells. Vis. Res. 32(5), 963–981 (1992)

  22. 22.

    Kaneva, B., Torralba, A., Freeman, W.T.: Evaluating image feaures using a photorealistic virtual world. In: Proceedings of IEEE International Conference on Computer Vision (2011)

  23. 23.

    Khvedchenia, I.: Comparison of the opencv feature detection algorithms. http://computer-vision-talks.com/2011/07/comparison-of-the-opencvs-feature-detection-algorithms-ii/ (2011). Accessed 2 Nov 2012

  24. 24.

    Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In: IEEE Intelligent Vehicles Symposium (IV), pp. 486–492 (2010)

  25. 25.

    Leutenegger, S., Chli, M., Siegwart, R.: BRISK: binary robust invariant scalable keypoints. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2548–2555 (2011)

  26. 26.

    Li, J., Allinson, N.M.: A comprehensive review of current local features for computer vision. Neurocomputing 71(10–12), 1771–1787 (2008)

  27. 27.

    Liao, K., Liu, G., Hui, Y.: An improvement to the SIFT descriptor for image representation and matching. Pattern Recognit. Lett. 34(11), 1211–1220 (2013)

  28. 28.

    Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)

  29. 29.

    Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

  30. 30.

    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

  31. 31.

    Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proceedings of IEEE International Conference on Computer Vision, pp. 525–531 (2001)

  32. 32.

    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

  33. 33.

    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1–2), 43–72 (2005)

  34. 34.

    Moravec, H.P.: Towards automatic visual obstacle avoidance. In: Proceedings of International Joint Conference on Artificial Intelligence, p. 584 (1977)

  35. 35.

    Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. In: Proceedings of IEEE International Conference on Computer Vision, vol. 1, pp. 800–807 (2005)

  36. 36.

    Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In: Proceedings of European Conference on Computer Vision, pp. 183–196 (2008)

  37. 37.

    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Proceedings of European Conference on Computer Vision, pp. 430–443 (2006)

  38. 38.

    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)

  39. 39.

    Schmid, C., Mohr, R., Bauckhage, C.: Comparing and evaluating interest points. In: Proceedings of IEEE International Conference on Computer Vision, pp. 230–235 (1998)

  40. 40.

    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vis. 37(2), 151–172 (2000)

  41. 41.

    Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)

  42. 42.

    Smith, S.M., Brady, J.M.: SUSAN—a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1995)

  43. 43.

    Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

  44. 44.

    Tomasi, C., Kanade, T.: Detection and tracking of point features. Tech. rep., Int. Jnl. of Comput. Vision, Carnegie Mellon, Tech. Rep. (1991)

  45. 45.

    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2008)

  46. 46.

    USC-SIPI: the usc-sipi image database. http://sipi.usc.edu/database/database.php(1977). Accessed 29 Nov 2012

  47. 47.

    Ziegler, A., Christiansen, E., Kriegman, D., Belongie, S.: Locally uniform comparison image descriptor. In: Neural Info. Proc. Sys., pp. 1–9 (2012)

  48. 48.

    Zuliani, M., Kennedy, C., Manjunath, B.: A mathematical comparison of point detectors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 11, pp. 172–178 (2004)

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful and constructive comments. We would like to thank Geiger et al. [13] for part of the code from LibViso2. The work is supported in part by the Canada Research Chair program, AUTO21 Networks of Centres of Excellence, and the Natural Sciences and Engineering Research Council of Canada.

Author information

Correspondence to Dibyendu Mukherjee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Jonathan Wu, Q.M. & Wang, G. A comparative experimental study of image feature detectors and descriptors. Machine Vision and Applications 26, 443–466 (2015). https://doi.org/10.1007/s00138-015-0679-9

Download citation

Keywords

  • Local features
  • Feature detectors
  • Feature descriptors
  • Comparative study