Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features

  • 625 Accesses

  • 38 Citations


Vessel segmentation is an important problem in medical image analysis and is often challenging due to large variations in vessel appearance and profiles, as well as image noises. To address these challenges, we propose a solution by combining heterogeneous context-aware features with a discriminative learning framework. Our solution is characterized by three key ingredients: First, we design a hybrid feature pool containing recently invented descriptors including the stroke width transform (SWT) and Weber’s local descriptors (WLD), as well as classical local features including intensity values, Gabor responses and vesselness measurements. Second, we encode context information by sampling the hybrid features from an orientation invariant local context. Third, we treat pixel-level vessel segmentation as a discriminative classification problem, and use a random forest to fuse the rich information encoded in the hybrid context-aware features. For evaluation, the proposed method is applied to retinal vessel segmentation using three publicly available benchmark datasets. On the DRIVE and STARE datasets, our approach achieves average classification accuracies of 0.9474 and 0.9633, respectively. On the high-resolution dataset HRFID, our approach achieves average classification accuracies of 0.9647, 0.9561 and 0.9634 on three different categories, respectively. Experiments are also conducted to validate the superiority of hybrid feature fusion over each individual component.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Results of the state-of-the-art method are taken from [1] using the method reported in [24].


  1. 1.

    High-Resolution Fundus (HRF) Image Database. https://www5.cs.fau.de/research/data/fundus-images/. Accessed 1 March 2014

  2. 2.

    Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. Med. Imaging IEEE Trans. 28(9), 1488–1497 (2009)

  3. 3.

    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

  4. 4.

    Cai, W., Chung, A.: Multi-resolution vessel segmentation using normalized cuts in retinal images. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, pp. 928–936 (2006)

  5. 5.

    Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. Med. Imaging IEEE Trans. 8(3), 263–269 (1989)

  6. 6.

    Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: Wld: a robust local image descriptor. Pattern Anal. Mach. Intell. IEEE Trans. 32(9), 1705–1720 (2010)

  7. 7.

    Cheng, E., McLaughlin, S., Megalooikonomou, V., Bakic, P., Maidment, A., Ling, H.: Learning-based vessel segmentation in mammographic images. In: Proceedings of the IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology (2011)

  8. 8.

    Criminisi, A., Shotton, J., Bucciarelli, S.: Decision forests with long-range spatial context for organ localization in ct volumes. In: Proceedings of MICCAI Workshop on Probabilistic Models for Medical Image Analysis (2009)

  9. 9.

    Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke width transform. In: Proceedings of Computer Vision and Pattern Recognition, IEEE Conference, pp. 2963–2970 (2010)

  10. 10.

    Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Proceedings of Medical Image Computing and Computer-Assisted Interventation pp. 130–137 (1998)

  11. 11.

    Fraz, M., Barman, S., Remagnino, P., Hoppe, A., Basit, A., Uyyanonvara, B., Rudnicka, A., Owen, C.: An approach to localize the retinal blood vessels using bit planes and centerline detection. In: Proceedings of Computer methods and programs in biomedicine (2011)

  12. 12.

    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Progr. Biomed. 108(1), 407–433 (2012)

  13. 13.

    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

  14. 14.

    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

  15. 15.

    Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)

  16. 16.

    Lam, B.S., Gao, Y., Liew, A.C.: General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans. Med. Imaging 29(7), 1369–1381 (2010)

  17. 17.

    Lam, B.Y., Yan, H.: A novel vessel segmentation algorithm for pathological retina images based on the divergence of vector fields. IEEE Trans. Med. Imaging 27(2), 237–246 (2008)

  18. 18.

    Lupascu, C.A., Tegolo, D., Trucco, E.: Fabc: retinal vessel segmentation using adaboost. IEEE Trans. Inf. Technol. Biomed. 14(5), 1267–1274 (2010)

  19. 19.

    Marin, D., Aquino, A., Gegúndez-Arias, M., Bravo, J.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)

  20. 20.

    Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)

  21. 21.

    Miri, M.S., Mahloojifar, A.: Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Trans. Biomed. Eng. 58(5), 1183–1192 (2011)

  22. 22.

    Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Proceedings of Medical Imaging 2004, International Society for Optics and Photonics, pp. 648–656 (2004)

  23. 23.

    Nuzhnaya, T., Cheng, E., Ling, H., Kontos, D., Bakic, P., Megalooikonomou, V.: Segmentation of anatomical branching structures based on texture features and graph cut. In: Proceedings of the IEEE International Symposium on Biomedical Imaging (2011)

  24. 24.

    Odstrčilík, J., Jan, J., Gazárek, J., Kolář, R.: Improvement of vessel segmentation by matched filtering in colour retinal images. In: Proceedings of World Congress on Medical Physics and Biomedical Engineering, 7–12 Sept 2009, Munich, Germany, pp. 327–330. Springer, New York (2009)

  25. 25.

    Perfetti, R., Ricci, E., Casali, D., Costantini, G.: Cellular neural networks with virtual template expansion for retinal vessel segmentation. IEEE Trans. Circuits Syst. II Express Briefs 54(2), 141–145 (2007)

  26. 26.

    Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)

  27. 27.

    Sinthanayothin, C., Boyce, J., Cook, H., Williamson, T.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83(8), 902–910 (1999)

  28. 28.

    Soares, J.V., Leandro, J.J., Cesar, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)

  29. 29.

    Sofka, M., Stewart, C.V.: Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans. Med. Imaging 25(12), 1531–1546 (2006)

  30. 30.

    Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

  31. 31.

    You, X., Peng, Q., Yuan, Y., Cheung, Ym, Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit. 44(10), 2314–2324 (2011)

  32. 32.

    Zana, F., Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7), 1010–1019 (2001)

  33. 33.

    Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of gaussian. Comput. Biol. Med. 40(4), 438–445 (2010)

Download references


The authors would like to thank the reviewers for valuable suggestions to improve the paper. The work is supported in part by the NSF Grants IIS-1407156 and IIS-1350521.

Author information

Correspondence to Haibin Ling.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, E., Du, L., Wu, Y. et al. Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features. Machine Vision and Applications 25, 1779–1792 (2014). https://doi.org/10.1007/s00138-014-0638-x

Download citation


  • Vessel segmentation
  • Random forest
  • Stroke width transform
  • Weber’s local descriptors