Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Unsupervised manifold learning based on multiple feature spaces

  • 427 Accesses

  • 2 Citations


Manifold learning is a well-known dimensionality reduction scheme which can detect intrinsic low-dimensional structures in non-linear high-dimensional data. It has been recently widely employed in data analysis, pattern recognition, and machine learning applications. Isomap is one of the most promising manifold learning algorithms, which extends metric multi-dimensional scaling by using approximate geodesic distance. However, when Isomap is conducted on real-world applications, it may have some difficulties in dealing with noisy data. Although many applications represent a special sample by multiple feature vectors in different spaces, Isomap employs samples in unique observation space. In this paper, two extended versions of Isomap to multiple feature spaces problem, namely fusion of dissimilarities and fusion of geodesic distances, are presented. We have employed the advantages of several spaces and depicted the Euclidean distance on learned manifold that is more compatible to the semantic distance. To show the effectiveness and validity of the proposed method, some experiments have been carried out on the application of shape analysis on MPEG7 CE Part B and Fish data sets.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)

  2. 2.

    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1349–1380 (2000)

  3. 3.

    Webb, A.: Statistical Pattern Recognition. Wiley, New York, p 305 (2002)

  4. 4.

    Ho, T.K.: Random decision forests. In: Proceedings of the 3th International Conference on Document Analysis and Recognition, pp 278–282 (1995)

  5. 5.

    Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17, 491–502 (2005)

  6. 6.

    Burges, C.J.C.: Geometric methods for feature extraction and dimensional reduction—a guided tour. In: Data Mining and Knowledge Discovery Handbook. Springer, Berlin, pp 53–82 (2010)

  7. 7.

    Min, W., Lu, K., He, X.: Locality pursuit embedding. Pattern Recognit. 37, 781–788 (2004)

  8. 8.

    He, X., Ma, W.Y., Zhang, H.J.: Learning an image manifold for retrieval. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, pp 17–23 (2004)

  9. 9.

    Lin, Y.Y., Liu, T.L., Chen, H.T.: Semantic manifold learning for image retrieval. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, pp 249–258 (2005)

  10. 10.

    He, X., Cai, D., Han, J.: Learning a maximum margin subspace for image retrieval. IEEE Trans. Knowl. Data Eng. 20, 189–201 (2007)

  11. 11.

    Xiao, B., Hancock, E., Yu, H.: Manifold embedding for shape analysis. Neurocomputing 73, 1606–1613 (2010)

  12. 12.

    Cheng, M., Fang, B., Tang, Y.Y., Zhang, T., Wen, J.: Incremental embedding and learning in the local discriminant subspace with application to face recognition. IEEE Trans. Syst. Man Cybern. 40, 580–891 (2010)

  13. 13.

    Xiao, R., Zhao, Q., Zhang, D., Shi, P.: Facial expression recognition on multiple manifolds. Pattern Recognit. 44, 107–116 (2011)

  14. 14.

    Qiao, H., Zhang, P., Zhang, B., Zheng, S.: Learning an intrinsic-variable preserving manifold for dynamic visual tracking. IEEE Trans. Syst. Man Cybernet. 40, 868–880 (2010)

  15. 15.

    Wang, L., Suter, D.: Visual learning and recognition of sequential data manifolds with applications to human movement analysis. Comput. Vis. Image Underst. 110, 153–172 (2008)

  16. 16.

    Wang, L., Suter, D.: Learning and matching of dynamic shape manifolds for human action recognition. IEEE Trans. Image Process. 16, 1646–1661 (2007)

  17. 17.

    Yan, S.: Synchronized submanifold embedding for person-independent pose estimation and beyond. IEEE Trans. Image Process. 18, 202–210 (2009)

  18. 18.

    Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

  19. 19.

    Geng, X., Zhan, D.C., Zhou, Z.H.: Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans. Syst. Man Cybern. 35, 1098–1107 (2005)

  20. 20.

    Cai, X., Nie, F., Huang, H., Kamangar, F.: Heterogeneous image feature integration via multi-modal spectral clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1977–1984 (2011)

  21. 21.

    Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, Berlin (2007)

  22. 22.

    Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. J. Shanghai Univ. (English Edition) 8, 406–424 (2004)

  23. 23.

    Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)

  24. 24.

    Shepard, R.N.: The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27, 219–246 (1962)

  25. 25.

    Tenenbaum, J.B.: Mapping a manifold of perceptual observations. In: Advances in Neural Information Processing Systems, pp. 682–688 (1998)

  26. 26.

    Sammon Jr, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 100, 401–409 (1969)

  27. 27.

    Demartines, P., Herault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Netw. 8, 148–154 (2002)

  28. 28.

    Lee, J.A., Lendasse, A., Donckers, N., Verleysen, M.: A robust nonlinear projection method. In: Proceedings of the European Symposium on Artificial Neural Networks, pp. 13–20 (2000)

  29. 29.

    Estevez, P.A., Chong, A.M.: Geodesic nonlinear mapping using the neural gas network. In: Proceedings of the International Joint Conference on Neural Networks, pp 3287–3294 (2006)

  30. 30.

    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

  31. 31.

    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)

  32. 32.

    He, X., Niyogi, P.: Locality preserving projections. Adv. Neural Inf. Process. Syst. 16, 153–160 (2003)

  33. 33.

    Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. 100, 5591–5596 (2003)

  34. 34.

    Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. Int. J. Comput. Vis. 70, 77–90 (2006)

  35. 35.

    Xiang, S., Nie, F., Zhang, C.: Nonlinear dimensionality reduction with local spline embedding. IEEE Trans. Knowl. Data Eng. 21(9), 1285–1298 (2009)

  36. 36.

    Zhan, Y., Yin, J.: Robust local tangent space alignment. Lect. Notes Comput. Sci. 5863, 293–301 (2009)

  37. 37.

    Bloch, I.: Information Fusion in Signal and Image Processing, pp. 13–14. Wiley, New York (2008)

  38. 38.

    Hall, D.L., Llinas, J.: An introduction to multisensor data fusion. In: Proceedings of the IEEE, pp. 6–23 (1997)

  39. 39.

    Chahooki, M.A.Z., Charkari, N.M.: Shape retrieval based on manifold learning by fusion of dissimilarity measures. IET Image Process. 6, 327–336 (2012)

  40. 40.

    Chahooki, M.A.Z., Charkari, N.M.: Learning the shape manifold to improve object recognition. Mach. Vis. Appl. 24, 33–46 (2013)

  41. 41.

    Chahooki, M.A.Z., Charkari, N.M.: Improvement of supervised shape retrieval by learning the manifold space. Int. J. Inf. Commun. Technol. 4, 49–56 (2011)

  42. 42.

    Mokhtarian, F., Abbasi, S., Kittler, J.: Robust and efficient shape indexing through curvature scale space. In: Proceedings of the British Machine and Vision Conference, pp. 53–62 (1996)

  43. 43.

    El-ghazal, A., Basir, O., Belkasim, S.: Farthest point distance: a new shape signature for Fourier descriptors. Signal Process. Image Commun. 24, 572–586 (2007)

  44. 44.

    Liu, H., Song, D., Rger, S., Hu, R., Uren, V.: Comparing dissimilarity measures for content-based image retrieval. In: Proceedings of the 4th Asia Information Retrieval Symposium (AIRS), pp. 44–50 (2008)

  45. 45.

    Qi, H., Li, K., Shen, Y., Qu, W.: An effective solution for trademark image retrieval by combining shape description and feature matching. Pattern Recognit. 43, 2017–2027 (2010)

  46. 46.

    Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29, 286–299 (2007)

  47. 47.

    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 509–522 (2002)

  48. 48.

    Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. IEEE Trans. Pattern Anal. Mach. Intell. 25, 116–125 (2003)

  49. 49.

    Grigorescu, C., Petkov, N.: Distance sets for shape filters and shape recognition. IEEE Trans. Image Process. 12, 1274–1286 (2003)

  50. 50.

    Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.: Shape representation and recognition through morphological curvature scale spaces. IEEE Trans. Image Process. 15, 331–341 (2006)

  51. 51.

    Mokhtarian, F., Bober, M.: Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization, vol. 25. Kluwer Academic Publishers, Dordrecht (2003)

  52. 52.

    Arica, N., Yarman Vural, F.T.: BAS: a perceptual shape descriptor based on the beam angle statistics. Pattern Recognit. Lett. 24, 1627–1639 (2003)

  53. 53.

    Adamek, T., O’Connor, N.E.: A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans. Circuits Syst. Video Technol. 14, 742–753 (2004)

  54. 54.

    Bandera, A., Antnez, E., Marfil, R.: An adaptive approach for affine-invariant 2D shape description. Pattern Recognit. Image Anal. 5524, 417–424 (2009)

  55. 55.

    Alajlan, N., El Rube, I., Kamel, M.S., Freeman, G.: Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recognit. 40, 1911–1920 (2007)

  56. 56.

    Daliri, M.R., Torre, V.: Robust symbolic representation for shape recognition and retrieval. Pattern Recognit. 41, 1782–1798 (2008)

  57. 57.

    Alajlan, N., Kamel, M.S., Freeman, G.H.: Geometry-based image retrieval in binary image databases. IEEE Trans. Pattern. Anal. Mach. Intell. 30, 1003–1013 (2008)

  58. 58.

    Yang, X., Bai, X., Latecki, L., Tu, Z.: Improving shape retrieval by learning graph transduction. In: Computer Vision ECCV, pp. 788–801 (2008)

  59. 59.

    Bai, X., Yang, X., Latecki, L.J., Liu, W., Tu, Z.: Learning context-sensitive shape similarity by graph transduction. IEEE Trans. Pattern Anal. Mach. Intell. 32, 861–874 (2009)

  60. 60.

    Bartolini, I., Ciaccia, P., Patella, M.: Warp: Accurate retrieval of shapes using phase of fourier descriptors and time warping distance. IEEE Trans. Pattern Anal. Mach. Intell. 27, 142–147 (2005)

Download references

Author information

Correspondence to Mohammad Ali Zare Chahooki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chahooki, M.A.Z., Charkari, N.M. Unsupervised manifold learning based on multiple feature spaces. Machine Vision and Applications 25, 1053–1065 (2014). https://doi.org/10.1007/s00138-014-0604-7

Download citation


  • Manifold learning
  • Non-linear dimensionality reduction
  • Shape retrieval
  • Image retrieval