Machine Vision and Applications

, Volume 24, Issue 8, pp 1685–1704 | Cite as

CM-BOF: visual similarity-based 3D shape retrieval using Clock Matching and Bag-of-Features

  • Zhouhui LianEmail author
  • Afzal Godil
  • Xianfang Sun
  • Jianguo Xiao
Original Paper


Content-based 3D object retrieval has become an active topic in many research communities. In this paper, we propose a novel visual similarity-based 3D shape retrieval method (CM-BOF) using Clock Matching and Bag-of-Features. Specifically, pose normalization is first applied to each object to generate its canonical pose, and then the normalized object is represented by a set of depth-buffer images captured on the vertices of a given geodesic sphere. Afterwards, each image is described as a word histogram obtained by the vector quantization of the image’s salient local features. Finally, an efficient multi-view shape matching scheme (i.e., Clock Matching) is employed to measure the dissimilarity between two models. When applying the CM-BOF method in non-rigid 3D shape retrieval, multidimensional scaling (MDS) should be utilized before pose normalization to calculate the canonical form for each object. This paper also investigates several critical issues for the CM-BOF method, including the influence of the number of views, codebook, training data, and distance function. Experimental results on five commonly used benchmarks demonstrate that: (1) In contrast to the traditional Bag-of-Features, the time-consuming clustering is not necessary for the codebook construction of the CM-BOF approach; (2) Our methods are superior or comparable to the state of the art in applications of both rigid and non-rigid 3D shape retrieval.


3D shape retrieval Non-rigid  Bag-of-Features  Local feature 



This work has been supported by National Natural Science Foundation of China (Grant No. 61202230), China Postdoctoral Science Foundation (Grant No.: 2012M510274), the SIMA program and the Shape Metrology IMS.


  1. 1.
    Agathos, A.: Part based 3D representation for the retrieval of 3D graphical models. PhD thesis, the University of Athens (2009)Google Scholar
  2. 2.
    Aim@Shape: SHape REtrieval Contest (SHREC). (2006)
  3. 3.
    Ankerst, M., Kastenmuller, G., Kriegel, H., Seidl, T.: Nearest neighbor classification in 3D protein databases. In: Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology, pp. 34–43 (1999)Google Scholar
  4. 4.
    Bespalov, D., Regli, W., Shokoufandeh, A.: Reeb graph based shape retrieval for cad. In: Proceedings of the ASME Design Engineering Technical Conferences, Computers and Information in Engineering Conference (2003)Google Scholar
  5. 5.
    Borg, I., Groenen, P.: Modern Multidimensional Scaling-Theory and Applications. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1–20 (2011)CrossRefGoogle Scholar
  7. 7.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, Berlin (2008)zbMATHGoogle Scholar
  8. 8.
    Chaouch, M., Verroust-Blondet, A.: Enhanced 2D/3D approaches based on relevance index for 3D-shape retrieval. In: Proceedings of the SMI’06, pp. 36–36 (2006)Google Scholar
  9. 9.
    Chaouch, M., Verroust-Blondet, A.: A new descriptor for 2D depth image indexing and 3D model retrieval. In: Proceedings of the ICIP’07, vol. 6, pp. 373–376 (2007)Google Scholar
  10. 10.
    Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D model retrieval. In: Proceedings of the Eurographics 2003, pp. 223–232 (2003)Google Scholar
  11. 11.
    Daras, P., Axenopoulos, A.: A 3D shape retrieval framework supporting multimodal queries. IJCV 89(2–3), 229–247 (2010)CrossRefGoogle Scholar
  12. 12.
    Daras, P., Axenopoulos, A., Litos, G.: Investigating the effects of multiple factors towards more accurate 3D object retrieval. IEEE Trans. Multimed. 14(2), 374–388 (2012)CrossRefGoogle Scholar
  13. 13.
    Elad, A., Kimmel, R.: On bending invariant signatures for surface. IEEE Trans. PAMI 25(10), 1285–1295 (2003)CrossRefGoogle Scholar
  14. 14.
    Fang, R., Godill, A., Li, X., Wagan, A.: A new shape benchmark for 3D object retrieval. In: Proceedings of the ISVC’08, pp. 381–392 (2008)Google Scholar
  15. 15.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: Proceedings of the CVPR’05, pp. 524–531 (2005)Google Scholar
  16. 16.
    Frome, A., Huber, D., Kolluri, R., Bulow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Proceedings of the ECCV’04 (2004)Google Scholar
  17. 17.
    Funkhouser, T., Shilane, P.: Partial matching of 3D shapes with priority-driven search. In: Proceedings of the SGP’06, pp. 131–142 (2006)Google Scholar
  18. 18.
    Furuya, T., Ohbuchi, R.: Dense sampling and fast encoding for 3D model retrieval using bag-of-visual features. In: Proceedings of the CIVR’09 (2009)Google Scholar
  19. 19.
    Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)CrossRefGoogle Scholar
  20. 20.
    Jayanti, S., Kalyanaraman, Y., Iyer, N., Ramani, K.: Developing an engineering shape benchmark for CAD models. Comput. Aided Des. 38(9), 939–953 (2006)CrossRefGoogle Scholar
  21. 21.
    Jegou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. IJCV 87(3), 316–336 (2010)CrossRefGoogle Scholar
  22. 22.
    Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. PAMI 21(5), 433–449 (1999)CrossRefGoogle Scholar
  23. 23.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proceedings of the SGP’03, vol. 43, pp. 156–164 (2003)Google Scholar
  24. 24.
    Laga, H., Takahashi, H., Nakajima, M.: Spherical wavelet descriptors for content-based 3D model retrieval. In: Proceedings of the SMI’06, pp. 15–15 (2006)Google Scholar
  25. 25.
    Li, X., Godill, A., Wagan, A.: Spatially enhanced bags of words for 3D shape retrieval. In: Proceedings of the ISVC’08, pp. 349–358 (2008)Google Scholar
  26. 26.
    Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoue, G., Nguyen, H., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recognit. 46(1), 449–461 (2013)CrossRefGoogle Scholar
  27. 27.
    Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoue, G., Nguyen, H.V., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: SHREC’11 track: shape retrieval on non-rigid 3D watertight meshes. In: Proceedings of the 3DOR’11, pp. 79–88 (2011)Google Scholar
  28. 28.
    Lian, Z., Godil, A., Sun, X.: Visual similarity based 3D shape retrieval using bag-of-features. In: Proceedings of the SMI’10, pp. 25–36 (2010)Google Scholar
  29. 29.
    Lian, Z., Godil, A., Sun, X., Zhang, H.: Non-rigid 3D shape retrieval using multidimensional scaling and bag-of-features. In: Proceedings of the International Conference on Image Processing (ICIP 2010), pp. 3181–3184 (2010)Google Scholar
  30. 30.
    Lian, Z., Rosin, P.L., Sun, X.: Rectilinearity of 3D meshes. IJCV 89(2–3), 130–151 (2010)CrossRefGoogle Scholar
  31. 31.
    Liu, Y., Zha, H., Qin, H.: Shape topics: A compact representation and new algorithms for 3D partial shape retrieval. In: Proceedings of the CVPR’06, pp. 2025–2032 (2006)Google Scholar
  32. 32.
    Lo, T.R., Siebert, J.P.: Local feature extraction and matching on range images: 2.5D SIFT. Comput. Vis. Image Underst. 113(12), 1235–1250 (2009)CrossRefGoogle Scholar
  33. 33.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  34. 34.
    Mahmoudi, M., Sapiro, G.: Three-dimensional point cloud recognition via distributions of geometric distances. Graph. Models 71(1), 22–31 (2009)CrossRefGoogle Scholar
  35. 35.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. PAMI 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  36. 36.
    Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag- of-features image classification. In: Proceedings of the ECCV’06, pp. 490–503 (2006)Google Scholar
  37. 37.
    Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient local visual features for shape-based 3D model retrieval. In: Proceedings of the SMI’08, pp. 93–102 (2008)Google Scholar
  38. 38.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002)CrossRefGoogle Scholar
  39. 39.
    Papadakis, P.: Content-based 3D model retrieval considering the user’s relevance feedback. PhD thesis, the University of Athens (2009)Google Scholar
  40. 40.
    Papadakis, P., Pratikakis, I., Perantonis, S., Theoharis, T.: Efficient 3d shape matching and retrieval using a concrete radialized spherical projection representation. Pattern Recognit. 40(9), 2437–2452 (2007)CrossRefzbMATHGoogle Scholar
  41. 41.
    Papadakis, P., Pratikakis, I., Theoharis, T., Perantonis, S.: PANORAMA: A 3D shape descriptor based on panoramic views for unsupervised 3D object retrieval. IJCV 89(2–3), 177–192 (2010)CrossRefGoogle Scholar
  42. 42.
    Passalis, G., Theoharis, T., Kakadiaris, I.A.: PTK: A novel depth buffer-based shape descriptor for three-dimensional object retrieval. Vis. Comput. 23(1), 5–14 (2007)CrossRefGoogle Scholar
  43. 43.
    Porethi, V., Godill, A., Dutagaci, H., Furuya, T., Lian, Z., Ohbuchi, R.: SHREC’10 track: generic 3D warehouse. In: Proceedings of the 3DOR’10, pp. 93–100 (2010)Google Scholar
  44. 44.
    Pu, J., Lou, K., Ramani, K.: A 2D sketch-based user interface for 3D CAD model retrieval. Comput. Aided Des. Appl. 2(6), 717–725 (2005)Google Scholar
  45. 45.
    Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: Proceedings of the SPM’05, pp. 101–106 (2005)Google Scholar
  46. 46.
    Ruggeri, M.R., Patane, G., Spagnuolo, M., Saupe, D.: Spectral-driven isometry-invariant matching of 3D shapes. IJCV 89(2–3), 248–265 (2010)Google Scholar
  47. 47.
    Shih, J., Hsing, C., Wang, J.: A new 3D model retrieval approach based on the elevation descriptor. Pattern Recognit. 40(1), 283–295 (2007)CrossRefzbMATHGoogle Scholar
  48. 48.
    Shilane, P., Funkhouser, T.: Distinctive regions of 3D surfaces. ACM Trans. Graph. 26(2) (2007)Google Scholar
  49. 49.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of the SMI’04, pp. 167–178 (2004)Google Scholar
  50. 50.
    Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3D models using medial surfaces. Mach. Vis. Appl. 19(4), 261–275 (2008)CrossRefGoogle Scholar
  51. 51.
    Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of the ICCV’03, pp. 1470–1477 (2003)Google Scholar
  52. 52.
    Smeets, D., Hermans, J., Vandermeulen, D., Suetens, P.: Isometric deformation invariant 3d shape recognition. Pattern Recognit. 45(7), 2817–2831 (2012)CrossRefGoogle Scholar
  53. 53.
    Sundar, H., Silver, D., Gavani, N., Dickinson, S.: Skeleton based shape matching and retrieval. In: Proceedings of the SMI’03, pp. 130–139 (2003)Google Scholar
  54. 54.
    Swain, M.J., Ballard, D.H.: Color indexing. IJCV 7(1), 11–32 (1991)CrossRefGoogle Scholar
  55. 55.
    Tal, A., Zuckerberger, E.: Mesh retrieval by components. Adv. Comput. Graph. Comput. Vis. 44–57 (2007)Google Scholar
  56. 56.
    Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008)CrossRefGoogle Scholar
  57. 57.
    Toldo, R., Castellani, U., Fusiello, A.: Visual vocabulary signature for 3D object retrieval and partial matching. In: Proceedings of the 3DOR’08, pp. 21–28 (2009)Google Scholar
  58. 58.
    Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms. (2008)
  59. 59.
    Vranić, D.V.: DESIRE: a composite 3D-shape descriptor. In: Proceedings of the ICME’05 (2005)Google Scholar
  60. 60.
    Vranić, D.V., Saupe, D., Richter, J.: Tools for 3D-object retrieval: Karhunen-loeve transform and spherical harmonics. In: Proceedings of the 2001 IEEE Fourth Workshop on Multimedia Signal Processing, pp. 293–298 (2001)Google Scholar
  61. 61.
    Wang, X., Liu, Y., Zha, H.: Intrinsic spin images: a subspace decomposition approach to understanding 3D deformable shapes. In: Proceedings of the 3DPVT’10, pp. 17–20 (2010)Google Scholar
  62. 62.
    Wu, C.: SiftGPU: a GPU implementation of David Lowe’s SIFT. (2009)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhouhui Lian
    • 1
    Email author
  • Afzal Godil
    • 2
  • Xianfang Sun
    • 3
  • Jianguo Xiao
    • 1
  1. 1.Institute of Computer Science and TechnologyPeking UniversityBeijingPeople’s Republic of China
  2. 2.National Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Cardiff UniversityWalesUK

Personalised recommendations