Advertisement

Machine Vision and Applications

, Volume 24, Issue 1, pp 175–186 | Cite as

Aircraft classification with a low resolution infrared sensor

  • Sidonie LefebvreEmail author
  • Stéphanie Allassonnière
  • Jérémie Jakubowicz
  • Thomas Lasne
  • Eric Moulines
Original Paper

Abstract

Existing computer simulations of aircraft infrared signature (IRS) do not account for dispersion induced by uncertainty on input parameters, such as aircraft aspect angles and meteorological conditions. As a result, they are of little use to quantify the detection performance of IR optronic systems: in this case, the scenario encompasses a lot of possible situations that must indeed be considered, but cannot be individually simulated. In this paper, we focus on low resolution infrared sensors and we propose a methodological approach for predicting simulated IRS dispersion of an aircraft, and performing a classification of different aircraft on the resulting set of low resolution infrared images. It is based on a quasi-Monte Carlo survey of the code output dispersion, and on a maximum likelihood classification taking advantage of Bayesian dense deformable template models estimation. This method is illustrated in a typical scenario, i.e., a daylight air-to-ground full-frontal attack by a generic combat aircraft flying at low altitude, over a database of 30,000 simulated aircraft images. Assuming a spatially white noise background model, classification performance is very promising, and appears to be more accurate than more classical state of the art techniques (such as kernel-based support vector classifiers).

Keywords

Infrared surveillance Aircraft classification Image processing Stochastic approximation Shapes statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johansson, M., Dalenbring, M.: SIGGE, a prediction tool for aeronautical IR signatures, and its applications. In: 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, vol. 3276. AIAA, California (2006)Google Scholar
  2. 2.
    Rao, A., Mahulikar, S.P.: Aircraft powerplant and plume infrared signature modelling and analysis. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, vol. 221. AIAA, Nevada (2005)Google Scholar
  3. 3.
    Noah, M., Kristl, J., Schroeder, J., Sandford, B.P.: NIRATAM-NATO Infrared Air Target Model. In: Gowrinathan, S., Mataloni, R.J., Schwartz, S.J. (eds.) Surveillance Technologies. Proceedings of SPIE, vol. 1479, pp. 275–282 (1991)Google Scholar
  4. 4.
    Gauffre G.: Aircraft infrared radiation modeling. Rech. Aerosp. 4, 245–265 (1981)Google Scholar
  5. 5.
    Lefebvre S., Roblin A., Varet S., Durand G.: A methodological approach for statistical evaluation of aircraft infrared signature. Reliab. Eng. Syst. Safety 95, 484–493 (2010)CrossRefGoogle Scholar
  6. 6.
    Jakubowicz J., Lefebvre S., Maire F., Moulines E.: Detecting aircrafts with a low resolution infrared sensor. IEEE Trans. Image Process. 21, 3034–3041 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chanussot J., Benediktsson J.-A., Fauvel M., Tarabalka Y.: Spectral-spatial analysis in hyperspectral remote sensing: from morphological profiles to classified segmentation. Proc. SPIE 7477, 13 (2009)Google Scholar
  8. 8.
    Gualtieri J.A., Cromp R.F.: Support Vector Machines for hyperspectral remote sensing classification. Proc. SPIE 3584, 221–232 (1998)CrossRefGoogle Scholar
  9. 9.
    Camps-Valls G., Gomez-Chova L., Munõz-Marí J., Vila-Francés J., Calpe-Maravilla J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3, 93–97 (2006)CrossRefGoogle Scholar
  10. 10.
    Chef d’Hotel C., Hermosillo G., Faugeras O.: Variational methods for multimodal image matching. Int. J. Comput. Vis. 50, 329–343 (2002)CrossRefGoogle Scholar
  11. 11.
    Glaunès, J., Joshi, S.: Template estimation form unlabeled point set data and surfaces for computational anatomy. In: Pennec, X., Joshi, S. (eds.) Proceedings of the International Workshop of the Mathematical Foundations of Computational Anatomy, pp. 29–39 (2006)Google Scholar
  12. 12.
    Glasbey C.A., Mardia K.V.: A penalised likelihood approach to image warping. J. R. Stat. Soc. Ser. B 63, 465–492 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Cootes, T.F., Edwards, G.J., Taylor, C.J. Actives appearance models. In: Burkhards, H., Neumann, B. (eds.) 5th European Conference on Computer Vision, vol. 2, pp. 484–498. Springer, Berlin (1998)Google Scholar
  14. 14.
    Marsland S., Twining C.J., Taylor C.J.: A minimum description length objective function for groupwise non-rigid image registration. Image Vis. Comput. 26, 333–346 (2008)CrossRefGoogle Scholar
  15. 15.
    Amit Y., Grenander U., Piccioni M.: Structural image restoration through deformable template. J. Am. Stat. Assoc. 86, 376–387 (1991)CrossRefGoogle Scholar
  16. 16.
    Winn, J., Jojic, N.: LOCUS: Learning Object Classes with Unsupervised Segmentation. In: Proc. IEEE Intl. Conf. on Computer Vision, Beijing (2005)Google Scholar
  17. 17.
    Allassonnière S., Amit Y., Trouvé A.: Toward a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc. 69, 3–29 (2007)CrossRefGoogle Scholar
  18. 18.
    Allassonnière S., Kuhn E., Trouvé A.: Construction of Bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli 16, 641–678 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Tuffin, B.: Simulation accélérée par les méthodes de Monte Carlo et Quasi-Monte Carlo: théorie et application. PhD in Applied Mathematics, University of Rennes 1, (1997)Google Scholar
  20. 20.
    Tezuka S., Faure H.: I-binomial scrambling of digital nets and sequences. J. Complex. 19, 744–757 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning. Springer, NY (2001)zbMATHGoogle Scholar
  22. 22.
    Delyon B., Lavielle M., Moulines E.: Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 27, 94–128 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    McLachlan G.J., Krishnan T.: The EM Algorithm and Extensions. Wiley, NY (2008)zbMATHCrossRefGoogle Scholar
  24. 24.
    Allassonnière, S.: Representation and Statistical Estimation of Deformable Template Models for Shape Recognition and Computational Anatomy. PhD in Mathematics, University of Paris XIII (2007)Google Scholar
  25. 25.
    Allassonnière S., Kuhn E.: Stochastic algorithm for Bayesian mixture effect template estimation. ESAIM-PS 14, 382–408 (2010)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sidonie Lefebvre
    • 1
    Email author
  • Stéphanie Allassonnière
    • 2
  • Jérémie Jakubowicz
    • 3
  • Thomas Lasne
    • 1
  • Eric Moulines
    • 4
  1. 1.ONERA-The French Aerospace LabPalaiseauFrance
  2. 2.CMAP UMR 7641Ecole PolytechniquePalaiseau CedexFrance
  3. 3.RST, TelecomSudParisEvryFrance
  4. 4.LTCI, UMR 5141TelecomParisTechParisFrance

Personalised recommendations