Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Recent Developments in 3D Multi-modal Laser Imaging Applied to Cultural Heritage

Abstract

This paper proposes a novel multi-modal three-dimensional (3D) laser scanning system that combines high-accuracy 3D laser imaging, very high-resolution perspective color projection, and on-site geometric calibration of the intrinsic and extrinsic parameters. Motion compensation directly from the range measurements using ICP and a 6-DOF self-built model tracking is also used to eliminate the need for stable mechanical structures and external positioning sensors. We show that scanner performances, modeling, and visualization are intimately linked and must be considered as an integral part of the modeling chain. This is particularly important in the field of heritage where the acquisition must adapt to the environment. Equations and charts are presented to compute the optimum color camera and laser scanner configuration for a given 3D modeling application in terms of camera settings such as optimum lens aperture, focal length, optimum range, and total range depth. These equations are general and can be used for most 3D acquisition systems including time-of-flight laser scanners. Experimental results are presented to demonstrate the validity of the approach.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Andreetto M., Brusco N., Cortelazzo G.M (2004). Automatic 3-D modeling of textured cultural heritage objects. IEEE Trans. Image Processing 13(3):354–369

  2. 2.

    Beraldin, J.-A., Picard, M., El-Hakim, S., Godin, G., Borgeat, L., Blais, F., Paquet, E., Rioux, M., Valzano, V., Bandiera, A: Virtual reconstruction of heritage sites: opportunities and challenges created by 3D technologies, In: Workshop on Recording, Modeling and Visualization of Heritage. Ascona, Switzerland, 22–27 May 2005

  3. 3.

    Beraldin, J.-A., Picard, M., El-Hakim, S.F., Godin, G., Valzano, V., Bandiera, A., Latouche, D.:Virtualizing a byzantine crypt by combining high-resolution textures with laser scanner 3D data. Proceedings of VSMM 2002, Gyeongju, Korea 25–27 September 2002

  4. 4.

    Bernardini F., Martin, I.M., Rushmeier, H.: High-quality texture reconstruction from multiple scans, IEEE Trans. Vis Comput. Gr. (4), 318–332 (2001).

  5. 5.

    Besl P.J. (1988). Active, optical range imaging sensors. Mach. Vision Appl. 1(2):127–152

  6. 6.

    Blais, F., Cournoyer, L., Picard, M.: NRC—model based field calibration for the NRC 3D auto-synchronized laser range sensor, NRC/ERB-1113, NRC47174, 18 August 2004b.

  7. 7.

    Blais, F., Picard, M., Godin, G.: Recursive model optimization using ICP and free moving 3D data acquisition, In: Proceedings 3DIM2003, 4th International Conference on 3-D Digital Imaging and Modeling, Banff, Alberta, Canada, 6–10 October 2003

  8. 8.

    Blais, F., Picard, M., Godin, G.: Accurate 3D acquisition of freely moving objects, In: Second International Symposium on 3D Data Processing, Visualization and Transmission. Thessaloniki, Greece, 6–9 September 2004c

  9. 9.

    Blais, F., Taylor, J., Cournoyer, L., Picard, M., Borgeat, L., Dicaire, L.-G., Rioux, M., Beraldin, J.-A., Godin, G., Lahnanier, C., Aitken, G.: Ultra-high resolution imaging at 50 μm using a portable XYZ-RGB color laser scanner, In: International Workshop on Recording, Modeling and Visualization of Cultural Heritage. Centro Stefano Franscini, Monte Verita. Ascona, Switzerland, 22–27 May 2005

  10. 10.

    Blais F. (2004a). Review of 20 years of range sensor development. J Elect. Imaging 13(1):231–243

  11. 11.

    Borgeat, L., Godin, G., Blais, F., Massicotte, P., Lahanier, C.: GoLD: interactive display of huge colored and textured models, The Association for Computing Machinery (ACM) Transactions on Graphics (Proceedings of ACM SIGGRAPH 2005). Los Angeles, California, USA. July 31–August 4, 2005

  12. 12.

    Chen F., Brown G.M., Song M. (2000). Overview of three-dimensional shape measurement using optical methods. Opt. Eng. 39:10–22

  13. 13.

    Cignoni P., Montani C. Rocchini C., Scopigno R. (2003). External memory management and simplification of huge meshes. IEEE Trans. Vis. Comput Gr. 9(4):525–537

  14. 14.

    El-Hakim, S., Beraldin, J.-A., Picard, M., Godin, G.: Detailed 3D reconstruction of large scale heritage sites with integrated techniques, IEEE J. Comput. Gr. Appl. 21–28 (2004).

  15. 15.

    El-Hakim S.F., Brenner C., Roth G. (1998). A multi-sensor approach to creating accurate virtual environments. ISPRS J Photogramm Remote Sensing 53:379–391

  16. 16.

    Hébert, P.: A self-referenced hand-held range sensor, In: Proceedings 3DIM 2001, 5–12, 2001

  17. 17.

    Holst, G.C.: Electro-Optical Imaging System Performance, JCD Publishing and SPIE (1995)

  18. 18.

    Jarvis A. (1983). A perspective on range finding techniques for computer vision. IEEE Trans. Pattern Anal. Mach. Intel. 5(2):122–139

  19. 19.

    Koninckx, T., Van Gool, L.: High-speed active 3D acquisition based in a pattern-specific mesh, In: Proceedings of ’SPIE: EI Photometrics’, USA, 26–37 January 2003

  20. 20.

    Kurazume, R., Nishino, K., Zhang, Z., Ikeuchi, K.: Mapping textures on 3D geometric model using reflectance image, In: Data Fusion Workshop, IEEE International Conference On Robotics and Automation, 2001

  21. 21.

    Lensch H.P.A., Kautz J., Goesele M., Heidrich W., Seidel H.-P. (2003). Image-based reconstruction of spatial appearance and geometric detail, ACM Trans. Gr. 2(22):234–257

  22. 22.

    Manual of photogrammetry, 4th edn: American Society of Photogrammetry, Falls Church, VA (1980)

  23. 23.

    Popescu, V., Sacks, E., Bahmutov, G.: The modelcamera: a hand-held device for interactive modeling, Proceedings 3DIM 2003, Banff, Canada, 2003

  24. 24.

    Rusinkiewicz, S., Levoy M.: Efficient variant of the ICP algorithm, In: Proceedings 3DIM 2001, 145–152 2001

  25. 25.

    Smith W.J. (1990). Modern Optical Engineering, 2nd edn. McGraw-Hill, New York

  26. 26.

    Soucy, M., Godin, G. Baribeau, R., Blais, F., Rioux, M.: Sensors and algorithms for the construction of digital 3-D colour models of real object, In: Proceedings of the IEEE ICIP, Lausanne, Switzerland, 16–19 vol II pp 409–412, September (1996)

  27. 27.

    Taylor, J., Beraldin, J.-A., Godin, G., Cournoyer, L., Baribeau, R., Blais, F., Rioux, M., Domey, J.: NRC 3D technology for museum and heritage applications, J. Vis. Comput. Anim. 14(3) (2003)

  28. 28.

    Tiziani H.J. (1997). Optical metrology of engineering surfaces-scope and trends. In: Rastogi P.K. (eds) Optical Measurement Techniques and Applications. Artech House, Boston, pp. 15–50

  29. 29.

    Sung-Eui Yoon S.-E., Salomon B., Gayle R., Manocha D. (2005). Quick-VDR: out-of-core view-dependent rendering of gigantic models. IEEE Trans. Vis. Comput. Gr. 11(4):369–382

Download references

Author information

Correspondence to François Blais.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blais, F., Beraldin, J.A. Recent Developments in 3D Multi-modal Laser Imaging Applied to Cultural Heritage. Machine Vision and Applications 17, 395–409 (2006). https://doi.org/10.1007/s00138-006-0025-3

Download citation

Keywords

  • Range sensor
  • 3D modeling
  • Laser scanner
  • Color
  • Texture mapping
  • Motion compensation
  • Tracking
  • Dynamic imaging