Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care: no simple answers to simple questions—a viewpoint of experts


Antimicrobial de-escalation (ADE) is defined as the discontinuation of one or more components of combination empirical therapy, and/or the change from a broad-spectrum to a narrower spectrum antimicrobial. It is most commonly recommended in the intensive care unit (ICU) patient who is treated with broad-spectrum antibiotics as a strategy to reduce antimicrobial pressure of empirical broad-spectrum therapy and prevent antimicrobial resistance, yet this has not been convincingly demonstrated in a clinical setting. Even if it appears beneficial, ADE may have some unwanted side effects: it has been associated with prolongation of antimicrobial therapy and could inappropriately be used as a justification for unrestricted broadness of empirical therapy. Also, exposing a patient to multiple, sequential antimicrobials could have unwanted effects on the microbiome. For these reasons, ADE has important shortcomings to be promoted as a quality indicator for appropriate antimicrobial use in the ICU. Despite this, ADE clearly has a role in the management of infections in the ICU. The most appropriate use of ADE is in patients with microbiologically confirmed infections requiring longer antimicrobial therapy. ADE should be used as an integral part of an ICU antimicrobial stewardship approach in which it is guided by optimal specimen quality and relevance. Rapid diagnostics may further assist in avoiding unnecessary initiation of broad-spectrum therapy, which in turn will decrease the need for subsequent ADE.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Tabah A, Cotta MO, Garnacho-Montero J, Schouten J, Roberts JA, Lipman J, Tacey M, Timsit JF, Leone M, Zahar JR, De Waele JJ (2016) A systematic review of the definitions, determinants, and clinical outcomes of antimicrobial de-escalation in the intensive care unit. Clin Infect Dis 62:1009–1017. https://doi.org/10.1093/cid/civ1199

  2. 2.

    Tabah A, Bassetti M, Kollef MH, Zahar JR, Paiva JA, Timsit JF, Roberts J, Schouten J, Giamarellou H, Rello J, De Waele J, Shorr A, Leone M, Poulakou G, Depuydt P, Garnacho-Montero J (2019) Antimicrobial de-escalation in critically ill patients: a position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP). Intensive Care Med. https://doi.org/10.1007/s00134-019-05866-w

  3. 3.

    Rello J, Paiva JA, Baraibar J, Barcenilla F, Bodi M, Castander D, Correa H, Diaz E, Garnacho J, Llorio M, Rios M, Rodriguez A, Solé-Violán J (2001) International conference for the development of consensus on the diagnosis and treatment of ventilator-associated pneumonia. Chest 120:955–970. https://doi.org/10.1378/chest.120.3.955

  4. 4.

    De Waele JJ, Akova M, Antonelli M, Canton R, Carlet J, De Backer D, Dimopoulos G, Garnacho-Montero J, Kesecioglu J, Lipman J, Mer M, Paiva JA, Poljak M, Roberts JA, Rodriguez Bano J, Timsit JF, Zahar JR, Bassetti M (2018) Antimicrobial resistance and antibiotic stewardship programs in the ICU: insistence and persistence in the fight against resistance. A position statement from ESICM/ESCMID/WAAAR round table on multi-drug resistance. Intensive Care Med 44:189–196. https://doi.org/10.1007/s00134-017-5036-1

  5. 5.

    Mathieu C, Pastene B, Cassir N, Martin-Loeches I, Leone M (2019) Efficacy and safety of antimicrobial de-escalation as a clinical strategy. Expert Rev Anti Infect Ther 17:79–88. https://doi.org/10.1080/14787210.2019.1561275

  6. 6.

    Timsit JF, Bassetti M, Cremer O, Daikos G, de Waele J, Kallil A, Kipnis E, Kollef M, Laupland K, Paiva JA, Rodríguez-Baño J, Ruppé É, Salluh J, Taccone FS, Weiss E, Barbier F (2019) Rationalizing antimicrobial therapy in the ICU: a narrative review. Intensive Care Med 45:172–189. https://doi.org/10.1007/s00134-019-05520-5

  7. 7.

    Leone M, Bechis C, Baumstarck K, Lefrant JY, Albanese J, Jaber S, Lepape A, Constantin JM, Papazian L, Bruder N, Allaouchiche B, Bezulier K, Antonini F, Textoris J, Martin C (2014) De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: a multicenter non-blinded randomized noninferiority trial. Intensive Care Med 40:1399–1408. https://doi.org/10.1007/s00134-014-3411-8

  8. 8.

    Garnacho-Montero J, Gutiérrez-Pizarraya A, Escoresca-Ortega A, Fernández-Delgado E, López-Sánchez JM (2015) Adequate antibiotic therapy prior to ICU admission in patients with severe sepsis and septic shock reduces hospital mortality. Crit Care 19:302. https://doi.org/10.1186/s13054-015-1000-z

  9. 9.

    Gutiérrez-Pizarraya A, Leone M, Garnacho-Montero J, Martin C, Martin-Loeches I (2017) Collaborative approach of individual participant data of prospective studies of de-escalation in non-immunosuppressed critically ill patients with sepsis. Expert Rev Clin Pharmacol 10:457–465. https://doi.org/10.1080/17512433.2017.1293520

  10. 10.

    Garnacho-Montero J, Gutierrez-Pizarraya A, Escoresca-Ortega A, Corcia-Palomo Y, Fernandez-Delgado E, Herrera-Melero I, Ortiz-Leyba C, Marquez-Vacaro JA (2014) De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med 40:32–40. https://doi.org/10.1007/s00134-013-3077-7

  11. 11.

    Armand-Lefèvre L, Angebault C, Barbier F, Hamelet E, Defrance G, Ruppé E, Bronchard R, Lepeule R, Lucet JC, El Mniai A, Wolff M, Montravers P, Plésiat P, Andremont A (2013) Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemother 57:1488–1495. https://doi.org/10.1128/AAC.01823-12

  12. 12.

    Sadyrbaeva-Dolgova S, Aznarte-Padial P, Pasquau-Liaño J, Expósito-Ruiz M, Calleja Hernández MÁ, Hidalgo-Tenorio C (2019) Clinical outcomes of carbapenem de-escalation regardless of microbiological results: a propensity score analysis. Int J Infect Dis 85:80–87. https://doi.org/10.1016/j.ijid.2019.04.034

  13. 13.

    Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, Clementi E, Gonzalez J, Jusserand D, Asfar P, Perrin D, Fieux F, Aubas S, PneumA TG (2003) Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 290:2588–2598. https://doi.org/10.1001/jama.290.19.2588

  14. 14.

    Carlier M, Roberts JA, Stove V, Verstraete AG, Lipman J, De Waele JJ (2015) A simulation study reveals lack of pharmacokinetic/pharmacodynamic target attainment in de-escalated antibiotic therapy in critically ill patients. Antimicrob Agents Chemother 59:4689–4694. https://doi.org/10.1128/AAC.00409-15

  15. 15.

    De Bus L, Denys W, Catteeuw J, Gadeyne B, Vermeulen K, Boelens J, Claeys G, De Waele JJ, Decruyenaere J, Depuydt PO (2016) Impact of de-escalation of beta-lactam antibiotics on the emergence of antibiotic resistance in ICU patients: a retrospective observational study. Intensive Care Med 42:1029–1039. https://doi.org/10.1007/s00134-016-4301-z

  16. 16.

    Lew KY, Ng TM, Tan M, Tan SH, Lew EL, Ling LM, Ang B, Lye D, Teng CB (2015) Safety and clinical outcomes of carbapenem de-escalation as part of an antimicrobial stewardship programme in an ESBL-endemic setting. J Antimicrob Chemother 70:1219–1225. https://doi.org/10.1093/jac/dku479

  17. 17.

    Weiss E, Zahar JR, Lesprit P, Ruppe E, Leone M, Chastre J, Lucet JC, Paugam-Burtz C, Brun-Buisson C, Timsit JF, De-escalation SG (2015) Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin Microbiol Infect 21:649.e1–649.e10. https://doi.org/10.1016/j.cmi.2015.03.013

  18. 18.

    Madaras-Kelly K, Jones M, Remington R, Hill N, Huttner B, Samore M (2014) Development of an antibiotic spectrum score based on veterans affairs culture and susceptibility data for the purpose of measuring antibiotic de-escalation: a modified Delphi approach. Infect Control Hosp Epidemiol 35:1103–1113. https://doi.org/10.1086/677633

  19. 19.

    Bhalodi AA, van Engelen TSR, Virk HS, Wiersinga WJ (2019) Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother 74:i6–i15. https://doi.org/10.1093/jac/dky530

  20. 20.

    Teshome BF, Vouri SM, Hampton N, Kollef MH, Micek ST (2019) Duration of exposure to antipseudomonal β-lactam antibiotics in the critically ill and development of new resistance. Pharmacotherapy 39:261–270. https://doi.org/10.1002/phar.2201

  21. 21.

    De Waele J, Van Eeckhout C, Vanhaelewyn P, Carlier M, Verstraete AG, Stove V (2019) Persistence of piperacillin concentrations after treatment discontinuation: in cauda venenum[letter]. Intensive Care Med 45(1):130–131

  22. 22.

    Sjövall F, Perner A, Hylander Møller M (2017) Empirical mono-versus combination antibiotic therapy in adult intensive care patients with severe sepsis—a systematic review with meta-analysis and trial sequential analysis. J Infect 74:331–344. https://doi.org/10.1016/j.jinf.2016.11.013

  23. 23.

    Dureau AF, Duclos G, Antonini F, Boumaza D, Cassir N, Alingrin J, Vigne C, Hammad E, Zieleskiewicz L, Leone M (2017) Rapid diagnostic test and use of antibiotic against methicillin-resistant Staphylococcus aureus in adult intensive care unit. Eur J Clin Microbiol Infect Dis 36:267–272. https://doi.org/10.1007/s10096-016-2795-5

  24. 24.

    Woerther PL, Lepeule R, Burdet C, Decousser JW, Ruppé É, Barbier F (2018) Carbapenems and alternative β-lactams for the treatment of infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: what impact on intestinal colonisation resistance. Int J Antimicrob Agents 52:762–770. https://doi.org/10.1016/j.ijantimicag.2018.08.026

  25. 25.

    Boutrot M, Azougagh K, Guinard J, Boulain T, Barbier F (2019) Antibiotics with activity against intestinal anaerobes and the hazard of acquired colonization with ceftriaxone-resistant Gram-negative pathogens in ICU patients: a propensity score-based analysis. J Antimicrob Chemother 74:3095–3103. https://doi.org/10.1093/jac/dkz279

  26. 26.

    Rennert-May E, Chew DS, Conly J, Guirguis M, Slobodan J, Fryters S, Bresee L (2019) Clinical practice guidelines for creating an acute care hospital-based antimicrobial stewardship program: a systematic review. Am J Infect Control 47:979–993. https://doi.org/10.1016/j.ajic.2019.02.010

  27. 27.

    Doernberg SB, Abbo LM, Burdette SD, Fishman NO, Goodman EL, Kravitz GR, Leggett JE, Moehring RW, Newland JG, Robinson PA, Spivak ES, Tamma PD, Chambers HF (2018) Essential resources and strategies for antibiotic stewardship programs in the acute care setting. Clin Infect Dis 67:1168–1174. https://doi.org/10.1093/cid/ciy255

  28. 28.

    Delannoy M, Agrinier N, Charmillon A, Degand N, Dellamonica J, Leone M, Pulcini C, Novy E (2019) Implementation of antibiotic stewardship programmes in French ICUs in 2018: a nationwide cross-sectional survey. J Antimicrob Chemother 74:2106–2114. https://doi.org/10.1093/jac/dkz113

  29. 29.

    van Limburg M, Sinha B, Lo-Ten-Foe JR, van Gemert-Pijnen JE (2014) Evaluation of early implementations of antibiotic stewardship program initiatives in nine Dutch hospitals. Antimicrob Resist Infect Control 3:33. https://doi.org/10.1186/2047-2994-3-33

  30. 30.

    Tamma PD, Avdic E, Keenan JF, Zhao Y, Anand G, Cooper J, Dezube R, Hsu S, Cosgrove SE (2017) What is the more effective antibiotic stewardship intervention: preprescription authorization or postprescription review with feedback. Clin Infect Dis 64:537–543. https://doi.org/10.1093/cid/ciw780

  31. 31.

    De Waele JJ, Martin-Loeches I (2018) Optimal duration of antibiotic treatment in Gram-negative infections. Curr Opin Infect Dis 31:606–611. https://doi.org/10.1097/QCO.0000000000000491

  32. 32.

    Garnier M, Gallah S, Vimont S, Benzerara Y, Labbe V, Constant AL, Siami S, Guerot E, Compain F, Mainardi JL, Montil M, Quesnel C, BLUE-CarbA SG (2019) Multicentre randomised controlled trial to investigate usefulness of the rapid diagnostic βLACTA test performed directly on bacterial cell pellets from respiratory, urinary or blood samples for the early de-escalation of carbapenems in septic intensive care unit patients: the BLUE-CarbA protocol. BMJ Open 9:e024561. https://doi.org/10.1136/bmjopen-2018-024561

  33. 33.

    Denny KJ, De Wale J, Laupland KB, Harris PNA, Lipman J (2019) When not to start antibiotics: avoiding antibiotic overuse in the intensive care unit. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2019.07.007

  34. 34.

    Bassetti M, De Waele JJ, Eggimann P, Garnacho-Montero J, Kahlmeter G, Menichetti F, Nicolau DP, Paiva JA, Tumbarello M, Welte T, Wilcox M, Zahar JR, Poulakou G (2015) Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria. Intensive Care Med 41:776–795. https://doi.org/10.1007/s00134-015-3719-z

  35. 35.

    Leone M, Martin C (2008) How to break the vicious circle of antibiotic resistances. Curr Opin Crit Care 14:587–592. https://doi.org/10.1097/MCC.0b013e32830f1deb

  36. 36.

    van den Bosch CM, Hulscher ME, Natsch S, Gyssens IC, Prins JM, Geerlings SE, Dutch SQIEP (2014) Development of quality indicators for antimicrobial treatment in adults with sepsis. BMC Infect Dis 14:345. https://doi.org/10.1186/1471-2334-14-345

  37. 37.

    van den Bosch CM, Geerlings SE, Natsch S, Prins JM, Hulscher ME (2015) Quality indicators to measure appropriate antibiotic use in hospitalized adults. Clin Infect Dis 60:281–291. https://doi.org/10.1093/cid/ciu747

  38. 38.

    van den Bosch CM, Hulscher ME, Natsch S, Wille J, Prins JM, Geerlings SE (2016) Applicability of generic quality indicators for appropriate antibiotic use in daily hospital practice: a cross-sectional point-prevalence multicenter study. Clin Microbiol Infect 22:888.e1–888.e9. https://doi.org/10.1016/j.cmi.2016.07.011

  39. 39.

    Schuts EC, Hulscher MEJL, Mouton JW, Verduin CM, Stuart JWTC, Overdiek HWPM, van der Linden PD, Natsch S, Hertogh CMPM, Wolfs TFW, Schouten JA, Kullberg BJ, Prins JM (2016) Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. Lancet Infect Dis 16:847–856. https://doi.org/10.1016/S1473-3099(16)00065-7

  40. 40.

    Singh N, Rogers P, Atwood CW, Wagener MM, Yu VL (2000) Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med 162:505–511. https://doi.org/10.1164/ajrccm.162.2.9909095

  41. 41.

    Klompas M, Li L, Menchaca JT, Gruber S, Centers FDCAPEP (2017) Ultra-short-course antibiotics for patients with suspected ventilator-associated pneumonia but minimal and stable ventilator settings. Clin Infect Dis 64:870–876. https://doi.org/10.1093/cid/ciw870

Download references

Author information

Correspondence to Jan J. De Waele.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Waele, J.J., Schouten, J., Beovic, B. et al. Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care: no simple answers to simple questions—a viewpoint of experts. Intensive Care Med (2020). https://doi.org/10.1007/s00134-019-05871-z

Download citation


  • Antimicrobial
  • Antibiotic
  • De-escalation
  • Antimicrobial stewardship
  • Antimicrobial resistance
  • Sepsis