Intensive Care Medicine

, Volume 45, Issue 12, pp 1753–1762 | Cite as

The association of cardiovascular failure with treatment for ventilator-associated lower respiratory tract infection

  • Ignacio Martin-LoechesEmail author
  • Antoni Torres
  • Pedro Povoa
  • Fernando G. Zampieri
  • Jorge Salluh
  • Saad Nseir
  • Miquel Ferrer
  • Alejandro Rodriguez
  • TAVeM study Group



Ventilator associated-lower respiratory tract infections (VA-LRTIs), either ventilator-associated pneumonia (VAP) or tracheobronchitis (VAT), accounts for most nosocomial infections in intensive care units (ICU) including. Our aim was to determine if appropriate antibiotic treatment in patients with VA-LRTI will effectively reduce mortality in patients who had cardiovascular failure.


This was a pre-planned subanalysis of a large prospective cohort of mechanically ventilated patients for at least 48 h in eight countries in two continents. Patients with a modified Sequential Organ Failure Assessment (mSOFA) cardiovascular score of 4 (at the time of VA-LRTI diagnosis and needed be present for at least 12 h) were defined as having cardiovascular failure.


VA-LRTI occurred in 689 (23.2%) out of 2960 patients and 174 (25.3%) developed cardiovascular failure. Patients with cardiovascular failure had significantly higher ICU mortality than those without (58% vs. 26.8%; p < 0.001; OR 3.7; 95% CI 2.6–5.4). A propensity score analysis found that the presence of inappropriate antibiotic treatment was an independent risk factor for ICU mortality in patients without cardiovascular failure, but not in those with cardiovascular failure. When the propensity score analysis was conducted in patients with VA-LRTI, the use of appropriate antibiotic treatment conferred a survival benefit for patients without cardiovascular failure who had only VAP.


Patients with VA-LRTI and cardiovascular failure did not show an association to a higher ICU survival with appropriate antibiotic treatment. Additionally, we found that in patients without cardiovascular failure, appropriate antibiotic treatment conferred a survival benefit for patients only with VAP.

Trial registry, number NCT01791530.


Pneumonia VAP SEPSIS VAT VA-LRTI Antibiotic stewardship 



TAVeM study Group

Writing committee: Ignacio Martín-Loeches, Pedro Povoa, Fernando Zampieri, Jorge Salluh, Saad Nseir and Alejandro Rodriguez.

Participants: I Martin-Loeches, P Povoa, A Rodríguez, D Curcio, J. P. Mira, M. L. Cordero, R. Lepecq, C. Girault, C. Candeias, P. Seguin, C. Paulino, J. Messika, A. G. Castro, L. Coelho, L. Rabello, T. Lisboa, A. Torres, J. Salluh, S. Nseir, R. O. Fernández, J. Arroyo, M. Gabriela, R. Alvarez, A. T. Reyes, C. Dellera, F. Molina, D. M. Franco, E. G. Parada, E. S. Yepez, F. P. Oña, D. M. Tutillo, D. Barahona, F. A. Lerma, A.A. Álvarez, J. M. Gallego, F. J. Morillas, A. L. Aguilar, M. L. Lorenzana, R. S. Iniesta, J. Almirall, A. Albaya, S. R. Santana, C. Fernandez, M. A. Potro, P. V. Cortes, B. Jimenez, R. Sierra, M. Del Valle Ortiz, N. Cruza, P. M. Olaechea, A. C. Zirena, P. P. Gonzalez, T. R. Gomez, L. S. Crespi, P.R. Galleymore, R. J. Marcos, C. Palazón, B. G. Rueda, J. C. Ballesteros, M. P. Arnilla, A. Socias, J. Amador, E. M. Silvero, L. M. Redín, M. Z. Elson, L. C. Pericas, J. Á. Rodríguez, M. Nieto, A. Torres, E. Molinos, A. Josefi, N. Catorze, P. Póvoa, C. Candeias, L. Coelho, P. André, M. Ángel, G. García, C. S. Ramirez, M. Calizaya, A. Estella, A. Albis, G. Aguilar, E. Torrents, M. G. Puente, A. G. Sanchez, T. Lisboa, P. Azambuja, M. F. Knibel, O. Ranzani, L. D. Camargo, A. P. Junior, C. B. Ferreira, S. Lobo, L. Rabello, M. Park, A. G. de Carvalho, M. Valencia, A. G. Castro, A. A. López, J. M. Caballero, S. Nseir, K. Jaffal, E. Parmentier-Decrucq, S. Préau, C. Rousselin, C. Blazejewski, J. Masse, L. Robriquet, L. Satre-Buisson, J. P. Mira, N. Martin, R. Lepecq, H. Mentec, C. Girault, A. Marchalot, J. Messika, J. D. Ricard, P. Seguin, B. Mégarbane, S. Valade, E. Azoulay, N. Boussekey, O. Leroy, J. Reignier, M. Clavel, N. Pichon, T. Baudry, L. Argaud, P. Beuret, A. A. Hssain, M. Nyunga, I. Alves, F. Dewavrin, G. Brunin, S. Mérat, P. Pasquier, F. Brun, A. Palud, B. Voisin, R. Grenot, N. Van Grunderbeeck, D. Thévenin, B. Misset, F. Philippart, J. P. Frat, R. Coudroy, P. Cabaret, M. Ledein, F. Z. Slimane, R. Miguel-Montanes, N. Weiss, F. Bolgert, B. Just.


Funding was supported by Joint Programming Initiative on Antimicrobial Resistance (Grant number 2018-06335). Grant support: 7th JPIAMR Call for Networks reg. no. 2018-06335

Compliance with ethical standards

Conflicts of interest

All author declares that they have no conflict of interest.


  1. 1.
    de Pascale G, Ranzani OT, Nseir S et al (2017) Intensive care unit patients with lower respiratory tract nosocomial infections: the ENIRRIs project. ERS Monogr. CrossRefGoogle Scholar
  2. 2.
    Coeurjolly J-F, Nguile-Makao M, Timsit J-F, Liquet B (2012) Attributable risk estimation for adjusted disability multistate models: application to nosocomial infections. Biom J 54:600–616. CrossRefPubMedGoogle Scholar
  3. 3.
    Martin-Loeches I, Povoa P, Rodríguez A et al (2015) Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): a multicentre, prospective, observational study. Lancet Respir Med 3:859–868. CrossRefPubMedGoogle Scholar
  4. 4.
    Grgurich PE, Hudcova J, Lei Y et al (2013) Diagnosis of ventilator-associated pneumonia: controversies and working toward a gold standard. Curr Opin Infect Dis 26:140–150. CrossRefPubMedGoogle Scholar
  5. 5.
    Simpson VS, Bailey A, Higgerson RA, Christie LM (2013) Ventilator-associated tracheobronchitis in a mixed medical/surgical pediatric ICU. Chest 144:32–38. CrossRefPubMedGoogle Scholar
  6. 6.
    Keane S, Vallecoccia MS, Nseir S, Martin-Loeches I (2018) How can we distinguish ventilator-associated tracheobronchitis from pneumonia? Clin Chest Med 39:785–796. CrossRefPubMedGoogle Scholar
  7. 7.
    Palmer LB, Smaldone GC, Chen JJ et al (2008) Aerosolized antibiotics and ventilator-associated tracheobronchitis in the intensive care unit. Crit Care Med 36:2008–2013. CrossRefPubMedGoogle Scholar
  8. 8.
    Fihman V, Messika J, Hajage D et al (2015) Five-year trends for ventilator-associated pneumonia: correlation between microbiological findings and antimicrobial drug consumption. Int J Antimicrob Agents 46:518–525. CrossRefPubMedGoogle Scholar
  9. 9.
    De Bus L, Gadeyne B, Steen J et al (2018) A complete and multifaceted overview of antibiotic use and infection diagnosis in the intensive care unit: results from a prospective four-year registration. Crit Care 22:241. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Martin-Loeches I, Rodriguez AH, Torres A (2018) New guidelines for hospital-acquired pneumonia/ventilator-associated pneumonia: USA vs Europe. Curr Opin Crit Care 24:347–352. CrossRefPubMedGoogle Scholar
  11. 11.
    Wilke M, Grube R (2013) Update on management options in the treatment of nosocomial and ventilator assisted pneumonia: review of actual guidelines and economic aspects of therapy. Infect Drug Resist 7:1–7. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
  13. 13.
    Martin-Loeches I, Deja M, Koulenti D et al (2013) Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med. CrossRefPubMedGoogle Scholar
  14. 14.
    Zampieri FG, Póvoa P, Salluh JI et al (2018) Lower respiratory tract infection and short-term outcome in patients with acute respiratory distress syndrome. J Intensive Care Med. CrossRefPubMedGoogle Scholar
  15. 15.
    Moreau A-S, Martin-Loeches I, Povoa P et al (2018) Impact of immunosuppression on incidence, aetiology and outcome of ventilator-associated lower respiratory tract infections. Eur Respir J. CrossRefPubMedGoogle Scholar
  16. 16.
    Vincent JL, Moreno R et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710CrossRefGoogle Scholar
  17. 17.
    Rouze A, Martin-Loeches I, Nseir S et al (2018) Community-acquired pneumonia: now you see it, now you don’t! Ann Transl Med 5:442. CrossRefGoogle Scholar
  18. 18.
    Magiorakos A-P, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. CrossRefPubMedGoogle Scholar
  19. 19.
    White IR, Royston P, Wood AM (2011) Multiple imputation using chained equations: issues and guidance for practice. Stat Med 30:377–399. CrossRefPubMedGoogle Scholar
  20. 20.
    Kahan BC (2014) Accounting for centre-effects in multicentre trials with a binary outcome—when, why, and how? BMC Med Res Methodol 14:20. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Brookhart MA, Schneeweiss S, Rothman KJ et al (2006) Variable selection for propensity score models. Am J Epidemiol 163:1149–1156. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Joffe MM, Rosenbaum PR (1999) Invited commentary: propensity scores. Am J Epidemiol 150:327–333. CrossRefPubMedGoogle Scholar
  23. 23.
    Ho DE, Imai K, King G, Stuart EA (2011) MatchIt : nonparametric preprocessing for parametric causal inference. J Stat Softw. CrossRefGoogle Scholar
  24. 24.
    Hranjec T, Rosenberger LH, Swenson B et al (2012) Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis 12:774–780. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rhodes A, Phillips G, Beale R et al (2015) The surviving sepsis campaign bundles and outcome: results from the international multicentre prevalence study on sepsis (the IMPreSS study). Intensive Care Med 41:1620–1628. CrossRefPubMedGoogle Scholar
  26. 26.
    Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377. CrossRefGoogle Scholar
  27. 27.
    Klompas M, Calandra T, Singer M (2018) Antibiotics for sepsis-finding the equilibrium. JAMA 320:1433–1434. CrossRefPubMedGoogle Scholar
  28. 28.
    Kumar AA, Zarychanski R, Light B et al (2010) Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis. Crit Care Med 38:1773–1785. CrossRefPubMedGoogle Scholar
  29. 29.
    Coopersmith CM, de Backer D, Deutschman CS et al (2018) Surviving sepsis campaign: research priorities for sepsis and septic shock. Intensive Care Med. CrossRefPubMedGoogle Scholar
  30. 30.
    Martin-Loeches I, Martinez M, de Haro C, et al (2012) Impact Of Time To Broad-Spectrum Antibiotic On Mortality Of Severe Sepsis And Septic Shock. Results From The Surviving Sepsis Campaign. Am J Respir Crit Care Med 185:A4004Google Scholar
  31. 31.
    Feemster LC, Saft HL, Bartlett SJ et al (2018) Patient-centered outcomes research in pulmonary, critical care, and sleep medicine. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 15:1005–1015. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Warren MM, Gibb AP, Walsh TS (2005) Antibiotic prescription practice in an intensive care unit using twice-weekly collection of screening specimens: a prospective audit in a large UK teaching hospital. J Hosp Infect 59:90–95. CrossRefPubMedGoogle Scholar
  33. 33.
    Kalanuria AA, Ziai W, Zai W, Mirski M (2014) Ventilator-associated pneumonia in the ICU. Crit Care 18:208. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Forel J-M, Voillet F, Pulina D et al (2012) Ventilator-associated pneumonia and ICU mortality in severe ARDS patients ventilated according to a lung-protective strategy. Crit Care 16:R65. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Melsen WG, Rovers MM, Koeman M, Bonten MJM (2011) Estimating the attributable mortality of ventilator-associated pneumonia from randomized prevention studies. Crit Care Med 39:2736–2742. CrossRefPubMedGoogle Scholar
  36. 36.
  37. 37.
    Perner A, Gordon AC, De Backer D et al (2016) Sepsis: frontiers in diagnosis, resuscitation and antibiotic therapy. Intensive Care Med 42:1958–1969. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ignacio Martin-Loeches
    • 1
    • 2
    • 3
    Email author
  • Antoni Torres
    • 3
  • Pedro Povoa
    • 4
    • 5
    • 6
  • Fernando G. Zampieri
    • 7
  • Jorge Salluh
    • 8
  • Saad Nseir
    • 9
  • Miquel Ferrer
    • 3
  • Alejandro Rodriguez
    • 10
  • TAVeM study Group
  1. 1.Department of Anaesthesia and Critical Care MedicineSt. James’s HospitalDublinIreland
  2. 2.Multidisciplinary Intensive Care Research Organization (MICRO), St James’s HospitalDublin 8Ireland
  3. 3.Pulmonary Intensive Care UnitRespiratory Institute, Hospital Clinic of Barcelona, IDIBAPS, University of BarcelonaBarcelonaSpain
  4. 4.Polyvalent Intensive Care UnitSão Francisco Xavier Hospital, Centro Hospitalar de Lisboa OcidentalLisbonPortugal
  5. 5.NOVA Medical SchoolNew University of LisbonLisbonPortugal
  6. 6.Center for Clinical Epidemiology and Research Unit of Clinical EpidemiologyOUH Odense University HospitalOdenseDenmark
  7. 7.HCor Research Institute, Hospital do CoraçãoSão PauloBrazil
  8. 8.Department of Critical Care and Graduate Program in Translational MedicineD’Or Institute for Research and EducationRio De JaneiroBrazil
  9. 9.Critical Care Center, University Hospital of LilleLille UniversityLilleFrance
  10. 10.Critical Care DepartmentHospital Universitario Joan XXIII, URV/IISPV/CIBERESTarragonaSpain

Personalised recommendations