Advertisement

Effectiveness of sodium bicarbonate infusion on mortality in septic patients with metabolic acidosis

  • Zhongheng Zhang
  • Carlie Zhu
  • Lei Mo
  • Yucai Hong
Original

Abstract

Objective

Although sodium bicarbonate (SB) solution has been widely used in clinical practice, its effect on mortality when administered to a large population of patients with acidosis is not known. The study aimed to investigate the effectiveness of SB infusion in septic patients with metabolic acidosis.

Methods

Septic patients with metabolic acidosis were identified from the Medical Information Mart for Intensive Care (MIMIC)-III database. Propensity score (PS) was used to account for the baseline differences in the probability to receive SB or not. The marginal structural Cox model (MSCM) was employed to adjust for both baseline and time-varying confounding factors.

Main results

A total of 1718 septic patients with metabolic acidosis were enrolled in the study, including 500 in the SB group and 1218 in the non-SB group. Both pH [7.16 (standard deviation (SD): 0.10) vs. 7.22 (SD: 0.07); p < 0.001] and bicarbonate concentration (BC) [11.84 (SD: 3.63) vs. 14.88 (SD: 3.36) mmol/l; p < 0.001] were significantly lower in the SB than that in the non-SB group. While there was no significant mortality effect in the overall population [hazard ratio (HR): 1.04; 95% CI 0.86–1.26; p = 0.67], SB was observed to be beneficial in patients with acute kidney injury (AKI) stage 2 or 3 and pH < 7.2 (HR 0.74; 95% CI 0.51–0.86; p = 0.021). Similar results were replicated with the MSCM.

Conclusion

Our study observed that SB infusion was not associated with improved outcome in septic patients with metabolic acidosis, but it was associated with improved survival in septic patients with AKI stage 2 or 3 and severe acidosis. The results need to be verified in randomized controlled trials.

Keywords

Sodium bicarbonate Critical care Sepsis Mortality Marginal structural Cox Model 

Notes

Funding

Z.Z. received funding from The public welfare research project of Zhejiang province (LGF18H150005) and Scientific research project of Zhejiang Education Commission (Y201737841).

Compliance with ethical standards

Conflicts of interest

There is no conflict of interest.

Supplementary material

134_2018_5379_MOESM1_ESM.docx (296 kb)
Supplementary material 1 (DOCX 295 kb)

References

  1. 1.
    Angus DC, Linde-Zwirble WT, Lidicker J et al (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310CrossRefGoogle Scholar
  2. 2.
    Zhang Z, Ni H, Qian Z (2015) Effectiveness of treatment based on PiCCO parameters in critically ill patients with septic shock and/or acute respiratory distress syndrome: a randomized controlled trial. Intensive Care Med 41:444–451.  https://doi.org/10.1007/s00134-014-3638-4 CrossRefPubMedGoogle Scholar
  3. 3.
    Raith EP, Udy AA, Bailey M et al (2017) Prognostic accuracy of the SOFA score, SIRS criteria, and qSOFA score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA 317:290–300.  https://doi.org/10.1001/jama.2016.20328 CrossRefPubMedGoogle Scholar
  4. 4.
    Khwannimit B (2007) A comparison of three organ dysfunction scores: MODS, SOFA and LOD for predicting ICU mortality in critically ill patients. J Med Assoc Thail 90:1074–1081Google Scholar
  5. 5.
    Maciel AT, Noritomi DT, Park M (2010) Metabolic acidosis in sepsis. Endocr Metab Immune Disord Drug Targets 10:252–257CrossRefGoogle Scholar
  6. 6.
    Kellum JA (2004) Metabolic acidosis in patients with sepsis: epiphenomenon or part of the pathophysiology? Crit Care Resusc 6:197–203PubMedGoogle Scholar
  7. 7.
    Kraut JA, Madias NE (2012) Treatment of acute metabolic acidosis: a pathophysiologic approach. Nat Rev Nephrol 8:589–601.  https://doi.org/10.1038/nrneph.2012.186 CrossRefPubMedGoogle Scholar
  8. 8.
    Gehlbach BK, Schmidt GA (2004) Bench-to-bedside review: treating acid–base abnormalities in the intensive care unit–the role of buffers. Crit Care 8:259–265.  https://doi.org/10.1186/cc2865 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sabatini S, Kurtzman NA (2009) Bicarbonate therapy in severe metabolic acidosis. J Am Soc Nephrol 20:692–695.  https://doi.org/10.1681/asn.2007121329 CrossRefPubMedGoogle Scholar
  10. 10.
    Jamme M, Ben Hadj Salem O, Guillemet L et al (2018) Severe metabolic acidosis after out-of-hospital cardiac arrest: risk factors and association with outcome. Ann Intensive Care 8:62.  https://doi.org/10.1186/s13613-018-0409-3 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kraut JA, Kurtz I (2006) Use of base in the treatment of acute severe organic acidosis by nephrologists and critical care physicians: results of an online survey. Clin Exp Nephrol 10:111–117.  https://doi.org/10.1007/s10157-006-0408-9 CrossRefPubMedGoogle Scholar
  12. 12.
    Parker MJ, Parshuram CS (2013) Sodium bicarbonate use in shock and cardiac arrest: attitudes of pediatric acute care physicians. Crit Care Med 41:2188–2195.  https://doi.org/10.1097/ccm.0b013e31828a6669 CrossRefPubMedGoogle Scholar
  13. 13.
    Jaber S, Paugam C, Futier E et al (2018) Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet 392:31–40.  https://doi.org/10.1016/s0140-6736(18)31080-8 CrossRefPubMedGoogle Scholar
  14. 14.
    Robins JM, Hernán MÁ, Brumback B (2000) Marginal structural models and causal inference in epidemiology. Epidemiology 11:550–560.  https://doi.org/10.1097/00001648-200009000-00011 CrossRefPubMedGoogle Scholar
  15. 15.
    Johnson AEW, Pollard TJ, Shen L et al (2016) MIMIC-III, a freely accessible critical care database. Sci Data 3:160035.  https://doi.org/10.1038/sdata.2016.35 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Benchimol EI, Smeeth L, Guttmann A et al (2015) The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Med 12:e1001885.  https://doi.org/10.1371/journal.pmed.1001885 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315(8):801–810CrossRefGoogle Scholar
  18. 18.
    Kidney Disease Improving Global Outcomes KDIGO Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138CrossRefGoogle Scholar
  19. 19.
    Zhang Z (2016) Missing data imputation: focusing on single imputation. Ann Transl Med 4:9.  https://doi.org/10.3978/j.issn.2305-5839.2015.12.38 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang Z (2016) Univariate description and bivariate statistical inference: the first step delving into data. Ann Transl Med 4:91.  https://doi.org/10.21037/atm.2016.02.11 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang Z, Gayle AA, Wang J et al (2017) Comparing baseline characteristics between groups: an introduction to the CBCgrps package. Ann Transl Med 5:484.  https://doi.org/10.21037/atm.2017.09.39 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang Z (2017) Propensity score method: a non-parametric technique to reduce model dependence. Ann Transl Med 5:7.  https://doi.org/10.21037/atm.2016.08.57 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    van der Wal WM, Geskus RB (2011) Ipw: an R Package for inverse probability weighting. J Stat Softw 43:1–23.  https://doi.org/10.18637/jss.v043.i13 CrossRefGoogle Scholar
  24. 24.
    Dupuis C, Garrouste-Orgeas M, Bailly S et al (2017) Effect of transfusion on mortality and other adverse events among critically ill septic patients: an observational study using a marginal structural cox model. Crit Care Med 45:1972–1980.  https://doi.org/10.1097/ccm.0000000000002688 CrossRefPubMedGoogle Scholar
  25. 25.
    de Keyser CE, Leening MJG, Romio SA et al (2014) Comparing a marginal structural model with a cox proportional hazard model to estimate the effect of time-dependent drug use in observational studies: statin use for primary prevention of cardiovascular disease as an example from the Rotterdam Study. Eur J Epidemiol 29:841–850.  https://doi.org/10.1007/s10654-014-9951-y CrossRefPubMedGoogle Scholar
  26. 26.
    Karim ME, Gustafson P, Petkau J et al (2014) Marginal structural cox models for estimating the association between β-interferon exposure and disease progression in a multiple sclerosis cohort. Am J Epidemiol 180:160–171.  https://doi.org/10.1093/aje/kwu125 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ahn S, Kim Y-J, Sohn CH et al (2018) Sodium bicarbonate on severe metabolic acidosis during prolonged cardiopulmonary resuscitation: a double-blind, randomized, placebo-controlled pilot study. J Thorac Dis 10:2295–2302.  https://doi.org/10.21037/jtd.2018.03.124 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mathieu D, Neviere R, Billard V et al (1991) Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med 19:1352–1356CrossRefGoogle Scholar
  29. 29.
    Cooper DJ, Walley KR, Wiggs BR, Russell JA (1990) Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. A prospective, controlled clinical study. Ann Intern Med 112:492–498CrossRefGoogle Scholar
  30. 30.
    Kim HJ, Son YK, An WS (2013) Effect of sodium bicarbonate administration on mortality in patients with lactic acidosis: a retrospective analysis. PLoS One 8:e65283.  https://doi.org/10.1371/journal.pone.0065283 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med.  https://doi.org/10.1007/s00134-017-4683-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2018

Authors and Affiliations

  1. 1.Department of Emergency Medicine, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.Department of Clinical Statistics3M China Research and Development CenterShanghaiChina
  3. 3.Department of BiostatisticsLejiu Healthcare Technology Co., LtdShanghaiChina

Personalised recommendations