Advertisement

Intensive Care Medicine

, Volume 44, Issue 8, pp 1276–1283 | Cite as

Association of iron status with the risk of bloodstream infections: results from the prospective population-based HUNT Study in Norway

  • Randi Marie Mohus
  • Julie Paulsen
  • Lise Gustad
  • Åsa Askim
  • Arne Mehl
  • Andrew T. DeWan
  • Jan Egil Afset
  • Bjørn Olav Åsvold
  • Erik Solligård
  • Jan Kristian Damås
Original

Abstract

Purpose

As iron is essential for both immune function and microbial growth, alterations in iron status could influence the risk of infections. We assessed the associations of iron status with risk of bloodstream infections (BSIs) and BSI mortality.

Methods

We measured serum iron, transferrin saturation (Tsat) and total iron-binding capacity (TIBC) in 61,852 participants in the population-based HUNT2 study (1995–97). Incident BSIs (1995–2011) were identified through linkage with the Mid-Norway Sepsis Register, which includes prospectively registered information on BSI from local and regional hospitals. We assessed the risk of a first-time BSI and BSI mortality with the iron indices using Cox proportional hazards regression analysis.

Results

During a median follow-up of 14.8 years, 1738 individuals experienced at least one episode of BSI, and 370 died within 30 days after a BSI. In age- and sex-adjusted analyses, BSI risk was increased among participants with indices of iron deficiency, serum iron ≤ 2.5th percentile (HR 1.72, 95% CI 1.34–2.21), Tsat ≤ 2.5th percentile (HR 1.48, 95% CI 1.12–1.96) or TIBC ≥ 97.5th percentile (HR 1.46, 95% CI 1.06–2.01). The associations remained similar after adjusting for comorbidities and exclusion of BSI related to cancer, rheumatic illnesses and inflammatory bowel disease. BSI mortality showed similar associations.

Conclusion

Indices of severe iron deficiency are associated with an increased risk of a future BSI.

Keywords

Bacteraemia Sepsis Iron Epidemiology Population based 

Notes

Acknowledgements

The Nord-Trøndelag Health Study (the HUNT study) is a collaboration of the HUNT research center (Faculty of Medicine, NTNU), Nord-Trøndelag County Council, Central Norway Health Authority and the Norwegian Institute of Public Health. We sincerely thank the microbiology departments of Levanger, Namsos and St. Olavs hospitals for providing microbial data and the Department for Research at Nord-Trøndelag Hospital Trust for assistance with data linkage.

Funding

This work was supported by a grant from The Liaison Committee for education, research and innovation in Central Norway.

Compliance with ethical standards

Conflicts of interest

Nothing to declare.

Supplementary material

134_2018_5320_MOESM1_ESM.doc (114 kb)
Supplementary material 1 (DOC 114 kb)

References

  1. 1.
    Cohen J, Vincent JL, Adhikari NK, Machado FR, Angus DC et al (2015) Sepsis: a roadmap for future research. Lancet Infect Dis 15:581–614CrossRefPubMedGoogle Scholar
  2. 2.
    Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377CrossRefPubMedGoogle Scholar
  3. 3.
    Henriksen DP, Pottegard A, Laursen CB, Jensen TG, Hallas J et al (2015) Risk factors for hospitalization due to community-acquired sepsis—a population-based case-control study. PLoS One 10:e0124838CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Paulsen J, Askim A, Mohus RM, Mehl A, Dewan A et al (2017) Associations of obesity and lifestyle with the risk and mortality of bloodstream infection in a general population: a 15-year follow-up of 64 027 individuals in the HUNT Study. Int J Epidemiol 46:1573–1581CrossRefPubMedGoogle Scholar
  5. 5.
    Wang HE, Shapiro NI, Griffin R, Safford MM, Judd S et al (2012) Chronic medical conditions and risk of sepsis. PLoS One 7:e48307CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Reddick LE, Alto NM (2014) Bacteria fighting back: how pathogens target and subvert the host innate immune system. Mol Cell 54:321–328CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ganz T, Nemeth E (2015) Iron homeostasis in host defence and inflammation. Nat Rev Immunol 15:500–510CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Perner A, Gordon AC, De Backer D, Dimopoulos G, Russell JA et al (2016) Sepsis: frontiers in diagnosis, resuscitation and antibiotic therapy. Intensive Care Med 42:1958–1969CrossRefPubMedGoogle Scholar
  9. 9.
    Hussain SQ, Ashraf M, Wani JG, Ahmed J (2014) Low hemoglobin level a risk factor for acute lower respiratory tract infections (ALRTI) in children. J Clin Diag Res 8:Pc01–Pc03Google Scholar
  10. 10.
    Gwamaka M, Kurtis JD, Sorensen BE, Holte S, Morrison R et al (2012) Iron deficiency protects against severe Plasmodium falciparum malaria and death in young children. Clin Infect Dis 54:1137–1144CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Drakesmith H, Prentice AM (2012) Hepcidin and the iron-infection axis. Science 338:768–772CrossRefPubMedGoogle Scholar
  12. 12.
    Bassetti M, Poulakou G, Ruppe E, Bouza E, Van Hal SJ et al (2017) Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach. Intensive Care Med 43:1464–1475CrossRefPubMedGoogle Scholar
  13. 13.
    Askim A, Mehl A, Paulsen J, DeWan AT, Vestrheim DF et al (2016) Epidemiology and outcome of sepsis in adult patients with Streptococcus pneumoniae infection in a Norwegian county 1993–2011: an observational study. BMC Infect Dis 16:223CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Paulsen J, Mehl A, Askim A, Solligard E, Asvold BO et al (2015) Epidemiology and outcome of Staphylococcus aureus bloodstream infection and sepsis in a Norwegian county 1996–2011: an observational study. BMC Infect Dis 15:116CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mohus RM, Askim Å, Paulsen J, Mehl A, Dewan A et al (2016) Association of iron status and risk of bloodstream infections in a general Norwegian population. The HUNT study. ESICM. https://services.y-congress.com/mediatheque/app/esicm/media.html?home_page_uri=posters.html&current_section=null&mediaId=21856&channel=16552. Accessed 15 June 2018
  16. 16.
    Krokstad S, Langhammer A, Hveem K, Holmen TL, Midthjell K et al (2013) Cohort Profile: the HUNT study, Norway. Int J Epidemiol 42:968–977CrossRefPubMedGoogle Scholar
  17. 17.
    Holmen JM, Krüger K, Langhammer Ø, Holmen A, Bratberg TL et al (2003) The Nord-Trøndelag Health Study 1995–97 (HUNT 2): objectives, contents, methods and participation. Norsk Epidemilogi 13:14Google Scholar
  18. 18.
    Hallan S, Astor B, Lydersen S (2006) Estimating glomerular filtration rate in the general population: the second Health Survey of Nord-Trondelag (HUNT II). Nephrol Dial Transplant 21:1525–1533CrossRefPubMedGoogle Scholar
  19. 19.
    Hall KK, Lyman JA (2006) Updated review of blood culture contamination. Clin Microbiol Rev 19:788–802CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ihlebaek C, Brage S, Natvig B, Bruusgaard D (2010) Occurrence of musculoskeletal disorders in Norway. Tidsskr Nor Legeforen 130:2365–2368CrossRefGoogle Scholar
  21. 21.
    Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W et al (2018) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390:2769–2778CrossRefPubMedGoogle Scholar
  22. 22.
    Thiebaut AC, Benichou J (2004) Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study. Stat Med 23:3803–3820CrossRefPubMedGoogle Scholar
  23. 23.
    Weiss G, Goodnough LT (2005) Anemia of chronic disease. N Engl J Med 352:1011–1023CrossRefPubMedGoogle Scholar
  24. 24.
    Tansarli GS, Karageorgopoulos DE, Kapaskelis A, Gkegkes I, Falagas ME (2013) Iron deficiency and susceptibility to infections: evaluation of the clinical evidence. Eur J Clin Microbiol Infect Dis 32:1253–1258CrossRefPubMedGoogle Scholar
  25. 25.
    Palazon A, Goldrath A, Nizet V, Johnson RS (2014) HIF transcription factors, inflammation, and immunity. Immunity 41:518–528CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jonker FA, Boele van Hensbroek M (2014) Anaemia, iron deficiency and susceptibility to infections. J Infect 69(Suppl 1):S23–S27CrossRefPubMedGoogle Scholar
  27. 27.
    Ekiz C, Agaoglu L, Karakas Z, Gurel N, Yalcin I (2005) The effect of iron deficiency anemia on the function of the immune system. Hematol J 5:579–583CrossRefPubMedGoogle Scholar
  28. 28.
    Sipahi T, Akar N, Egin Y, Cin S (1998) Serum interleukin-2 and interleukin-6 levels in iron deficiency anemia. Pediatr Hematol Oncol 15:69–73CrossRefPubMedGoogle Scholar
  29. 29.
    Guralnik JM, Eisenstaedt RS, Ferrucci L, Klein HG, Woodman RC (2004) Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood 104:2263–2268CrossRefPubMedGoogle Scholar
  30. 30.
    Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L (2016) Iron deficiency anaemia. Lancet 387:907–916CrossRefPubMedGoogle Scholar
  31. 31.
    Peyrin-Biroulet L, Williet N, Cacoub P (2015) Guidelines on the diagnosis and treatment of iron deficiency across indications: a systematic review. Am J Clin Nutr 102:1585–1594CrossRefPubMedGoogle Scholar
  32. 32.
    Hawkins RC (2007) Total iron binding capacity or transferrin concentration alone outperforms iron and saturation indices in predicting iron deficiency. Clin Chim Acta 380:203–207CrossRefPubMedGoogle Scholar
  33. 33.
    Johansson L, Solvoll K (1999) Norkost 1997 Landsomfattende kostholdsundersøkelse blant menn og kvinner i alderen 16-79 år. Statens ernæringsråd 2:1–84Google Scholar
  34. 34.
    Fonseca C, Marques F, Robalo Nunes A, Belo A et al (2016) Prevalence of anaemia and iron deficiency in Portugal: the EMPIRE study. Intern Med J 46:470–478CrossRefPubMedGoogle Scholar
  35. 35.
    de Silva A, Atukorala S, Weerasinghe I, Ahluwalia N (2003) Iron supplementation improves iron status and reduces morbidity in children with or without upper respiratory tract infections: a randomized controlled study in Colombo, Sri Lanka. Am J Clin Nutr 77:234–241CrossRefPubMedGoogle Scholar
  36. 36.
    Litton E, Xiao J, Ho KM (2013) Safety and efficacy of intravenous iron therapy in reducing requirement for allogeneic blood transfusion: systematic review and meta-analysis of randomised clinical trials. BMJ 347:f4822CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2018

Authors and Affiliations

  1. 1.Department of Circulation and Medical ImagingNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU)TrondheimNorway
  3. 3.Department of Clinical and Molecular MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
  4. 4.Department of Medical GeneticsNorwegian University of Science and Technology (NTNU)TrondheimNorway
  5. 5.Department of Public Health and NursingNorwegian University of Science and Technology (NTNU)TrondheimNorway
  6. 6.Mid-Norway Sepsis Research CenterNorwegian University of Science and Technology (NTNU)TrondheimNorway
  7. 7.K.G. Jebsen Center for Genetic EpidemiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
  8. 8.Clinic of Anaesthesia and Intensive CareSt. Olavs HospitalTrondheimNorway
  9. 9.Department of EndocrinologySt. Olavs HospitalTrondheimNorway
  10. 10.Department of Infectious DiseasesSt. Olavs HospitalTrondheimNorway
  11. 11.Department of Medicine, Levanger HospitalNord-Trøndelag Hospital TrustLevangerNorway
  12. 12.Department of Chronic Disease EpidemiologyYale School of Public HealthNew HavenUSA

Personalised recommendations