Intensive Care Medicine

, Volume 44, Issue 8, pp 1221–1229 | Cite as

Premorbid functional status as a predictor of 1-year mortality and functional status in intensive care patients aged 80 years or older

  • Laura PietiläinenEmail author
  • Johanna Hästbacka
  • Minna Bäcklund
  • Ilkka Parviainen
  • Ville Pettilä
  • Matti Reinikainen



We assessed the association between the premorbid functional status (PFS) and 1-year mortality and functional status of very old intensive care patients.


Using a nationwide quality registry, we retrieved data on patients treated in Finnish intensive care units (ICUs) during the period May 2012‒April 2013. Of 16,389 patients, 1827 (11.1%) were very old (aged 80 years or older). We defined a person with good functional status as someone independent in activities of daily living (ADL) and able to climb stairs without assistance; a person with poor functional status was defined as needing assistance for ADL or being unable to climb stairs. We adjusted for severity of illness and calculated the impact of PFS.


Overall, hospital mortality was 21.3% and 1-year mortality was 38.2%. For emergency patients (73.5% of all), hospital mortality was 28% and 1-year mortality was 48%. The functional status at 1 year was comparable to the PFS in 78% of the survivors. PFS was poor for 43.3% of the patients. A poor PFS predicted an increased risk of in-hospital death, adjusted odds ratio (OR) 1.50 (95% confidence interval, 1.07–2.10), and of 1-year mortality, OR 2.18 (1.67–2.85). PFS data significantly improved the prediction of 1-year mortality.


Of very old ICU patients, 62% were alive 1 year after ICU admission and 78% of the survivors had a functional status comparable to the premorbid situation. A poor PFS doubled the odds of death within a year. Knowledge of PFS improved the prediction of 1-year mortality.


Very old Intensive care ICU Mortality Functional status Frailty 



List of contributors: Satakunta Central Hospital, Pori: Vesa Lund, Pauliina Perkola, Riikka Virtanen; Central Hospital of Savonlinna, Savonlinna: Katrine Pesola, Anne Solonen, Tiina Kettunen; Central Finland Central Hospital, Jyväskylä: Raili Laru-Sompa, Mikko Reilama; Mikkeli Central Hospital, Mikkeli: Heikki Laine, Sari Paunonen; North Karelia Central Hospital, Joensuu: Matti Reinikainen, Helena Jyrkönen, Tanja Eiserbeck, Tero Surakka; Southern Ostrobothnia Central Hospital, Seinäjoki: Kari Saarinen, Pauliina Lähdeaho; South Karelia Central Hospital, Lappeenranta: Seppo Hovilehto, Sari Kontula, Kati Hietala; Päijät-Häme Central Hospital, Lahti: Pekka Loisa, Pirjo Tuomi, Alli Parviainen; Central Hospital of Kainuu, Kajaani: Sami Mäenpää, Marko Pohjanpaju, Kari Auvinen; Vaasa Central Hospital, Vaasa: Simo-Pekka Koivisto; Central Hospital of Tavastia, Hämeenlinna: Ari Alaspää, Tarja Heikkilä, Piia Laitinen; Helsinki University Hospital, Jorvi Hospital, Espoo: Johanna Hästbacka, Taina Nieminen, Mira Rahkonen, Niina Prittinen; Helsinki University Central Hospital, Meilahti Hospital, Helsinki: Raili Suojaranta, Elina Lappi, Marja Hynninen, Kaija Kiljunen; Lapland Central Hospital, Rovaniemi: Outi Kiviniemi, Sirpa Suominen, Esa Lintula; Middle Ostrobothnia Central Hospital, Kokkola: Tadeusz Kaminski, Tuija Kuusela, Jane Roiko; Kymenlaakso Central Hospital, Kotka: Reija Koskinen, Miia Härmä; Turku University Hospital, Turku: Ruut Laitio, Jutta Kotamäki, Satu Kentala, Eveliina Loikas, Päivi Haltia, Keijo Leivo; Tampere University Hospital, Tampere: Sari Karlsson, Auli Palmu, Kati Järvelä, Minna-Liisa Peltola; Central Hospital of Länsi-Pohja, Kemi: Jorma Heikkinen, Anne-Mari Juopperi; Kuopio University Hospital, Kuopio: Ilkka Parviainen, Saija Rissanen, Elina Halonen, Sari Rahikainen; Oulu University Hospital, Oulu: Tero Ala-Kokko, Sinikka Sälkiö.

We thank biostatistician Tuomas Selander, MSc, for help with the statistical analyses, and Tieto Ltd for good collaboration with retrieving data from the FICC database. The study was supported by an institutional research grant from Kuopio University Hospital (code EVO 5070241).

Compliance with ethical standards

Conflicts of interest

Dr Hästbacka has received reimbursement for research meeting travel expenses from LaJolla Pharmaceutical and compensation for consulting from Pfizer. The other authors have no conflicts of interests.

Supplementary material

134_2018_5273_MOESM1_ESM.pdf (385 kb)
Supplementary material 1 (PDF 384 kb)
134_2018_5273_MOESM2_ESM.pdf (154 kb)
Supplementary material 2 (PDF 154 kb)


  1. 1.
    World Health Organization (2017) Ageing and life course. 5 June 2018
  2. 2.
    Reinikainen M, Uusaro A, Niskanen M, Ruokonen E (2007) Intensive care of the elderly in Finland. Acta Anaesthesiol Scand 51:522–529CrossRefPubMedGoogle Scholar
  3. 3.
    Nielsson MS, Christiansen CF, Johansen MB, Rasmussen BS, Tonnesen E, Norgaard M (2013) Mortality in elderly ICU patients: a cohort study. Acta Anaesthesiol Scand 58:19–26CrossRefPubMedGoogle Scholar
  4. 4.
    Montgomery C, Bagshaw SM (2017) Frailty in the age of VIPs (very old intensive care patients). Intensive Care Med 43:1887–1888CrossRefPubMedGoogle Scholar
  5. 5.
    Bagshaw SM, Mc Dermid RC (2013) The role of frailty in outcomes from critical illness. Curr Opin Crit Care 19:496–503CrossRefPubMedGoogle Scholar
  6. 6.
    Bagshaw SM, Stelfox HT, McDermid RC et al (2014) Association between frailty and short- and long-term outcomes among critically ill patients: a multicentre prospective cohort study. CMAJ 186:E95–E102CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bagshaw SM, Stelfox HT, Johnson JA et al (2015) Long-term association between frailty and health-related quality of life among survivors of critical illness: a prospective multicenter cohort study. Crit Care Med 43:973–982CrossRefPubMedGoogle Scholar
  8. 8.
    Muscedere J, Waters B, Varambally A et al (2017) The impact of frailty on intensive care unit outcomes: a systematic review and meta-analysis. Intensive Care Med 43:1105–1122CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Flaatten H, de Lange DW, Artigas A et al (2017) The status of intensive care medicine research and future agenda for very old patients in the ICU. Intensive Care Med 43:1319–1328CrossRefPubMedGoogle Scholar
  10. 10.
    Chelluri L, Pinsky MR, Donahoe MP, Grenvik A (1993) Long-term outcome of critically ill elderly patients requiring intensive care. JAMA 269:3119–3123CrossRefPubMedGoogle Scholar
  11. 11.
    Wood KA, Ely EW (2003) What does it mean to be critically ill and elderly? Curr Opin Crit Care 9:316–320CrossRefPubMedGoogle Scholar
  12. 12.
    Kaarlola A, Tallgren M, Pettilä V (2006) Long-term survival, quality of life, and quality-adjusted life-years among critically ill elderly patients. Crit Care Med 34:2120–2126CrossRefPubMedGoogle Scholar
  13. 13.
    Zampieri FG, Colombari F (2014) The impact of performance status and comorbidities on the short-term prognosis of very elderly patients admitted to the ICU. BMC Anesthesiol 14:59–67CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Heyland D, Cook D, Bagshaw SM et al (2015) The very elderly admitted to ICU: a quality finish? Crit Care Med 43:1352–1360CrossRefPubMedGoogle Scholar
  15. 15.
    Flaatten H, De Lange DW, Morandi A et al (2017) The impact of frailty on ICU and 30-day mortality and the level of care in very elderly patients (≥ 80 years). Intensive Care Med 43:1820–1828CrossRefPubMedGoogle Scholar
  16. 16.
    Heyland DK, Garland A, Bagshaw SM et al (2015) Recovery after critical illness in patients aged 80 years or older: a multi-center prospective observational cohort study. Intensive Care Med 41:191–1920CrossRefGoogle Scholar
  17. 17.
    Ihra GC, Lehberger J, Hochrieser H et al (2012) Development of demographics and outcome of very old critically ill patients to intensive care units. Intensive Care Med 38:620–626CrossRefPubMedGoogle Scholar
  18. 18.
    European Commission (2012) eHealth Action Plan 2012–2020—Innovative healthcare for the 21st century. Accessed 5 June 2018
  19. 19.
    Krinsley JS, Wasser T, Kang G, Bagshaw SM (2017) Pre-admission functional status impacts the performance of the APACHE IV model of mortality prediction in critically ill patients. Crit Care 21:110CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Knaus WA, Draper EA, Wagner DP (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829CrossRefPubMedGoogle Scholar
  21. 21.
    Le Gall JRJ, Lemeshow SS, Saulnier FF (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963CrossRefPubMedGoogle Scholar
  22. 22.
    Reinikainen M, Mussalo P, Hovilehto S, Uusaro A, Varpula T, Kari A, Pettilä V, Finnish Intensive Care Consortium (2012) Association of automated data collection and data completeness with outcome of intensive care. A new customised model for outcome prediction. Acta Anaesthesiol Scand 56:1114–1122CrossRefPubMedGoogle Scholar
  23. 23.
    Vincent JL, Moreno R, Takala J et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710CrossRefPubMedGoogle Scholar
  24. 24.
    Vincent JL, de Mendonça A, Cantraine F et al (1998) Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med 26:1793–1800CrossRefPubMedGoogle Scholar
  25. 25.
    Keene AR, Cullen DJ (1983) Therapeutic Intervention Scoring System: update 1983. Crit Care Med 11:1–3CrossRefPubMedGoogle Scholar
  26. 26.
    Oken M, Creech R, Tormey D et al (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649–655CrossRefPubMedGoogle Scholar
  27. 27.
    Heyland DK, Stelfox HT, Garland A et al (2016) Predicting performance status 1 year after critical illness in patients 80 years or older: development of a multivariable clinical prediction model. Crit Care Med 44:1718–1726CrossRefPubMedGoogle Scholar
  28. 28.
    Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, Mitnitski A (2005) A global clinical measure of fitness and frailty in elderly people. CMAJ 173:489–495CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pugh RJ, Ellison A, Pye K, Subbe CP, Thorpe CM, Lone NI, Clegg A (2018) Feasibility and reliability of frailty assessment in the critically ill: a systematic review. Crit Care 22:49CrossRefPubMedGoogle Scholar
  30. 30.
    Bagshaw SM, Webb SA, Delaney A et al (2009) Very old patients admitted to intensive care in Australia and New Zealand: a multi-centre cohort analysis. Crit Care 13:R45CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Robert R, Skrifvars MB, Ranzani OT (2017) Is this critically ill patient elderly or too old? Intensive Care Med 43:1884–1886CrossRefPubMedGoogle Scholar
  32. 32.
    Boumendil A, Aegerter P, Guidet B, CUB-Rea Network (2005) Treatment intensity and outcome of patients aged 80 and older in intensive care units: a multicenter matched-cohort study. J Am Geriatr Soc 53:88–93CrossRefPubMedGoogle Scholar
  33. 33.
    Skjaker SA, Hoel H, Dahl V, Stavem K (2017) Factors associated with life-sustaining treatment restriction in a general intensive care unit. PLoS One 12(7):e0181312 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2018

Authors and Affiliations

  1. 1.Department of AnaesthesiologyKuopio University HospitalKuopioFinland
  2. 2.Division of Intensive Care Medicine, Department of Anaesthesiology, Intensive Care and Pain MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
  3. 3.Department of Intensive CareKuopio University HospitalKuopioFinland
  4. 4.Department of Intensive CareNorth Karelia Central HospitalJoensuuFinland

Personalised recommendations