Advertisement

Intensive Care Medicine

, Volume 44, Issue 8, pp 1212–1220 | Cite as

Assessing predictive accuracy for outcomes of ventilator-associated events in an international cohort: the EUVAE study

  • Sergio Ramírez-Estrada
  • Leonel Lagunes
  • Yolanda Peña-López
  • Amir Vahedian-Azimi
  • Saad Nseir
  • Kostoula Arvaniti
  • Aliye Bastug
  • Izarne Totorika
  • Nefise Oztoprak
  • Lilla Bouadma
  • Despoina Koulenti
  • Jordi Rello
  • the EU-VAE Study Investigators Group
Original

Abstract

Purpose

To analyze the impact on patient outcome of ventilator-associated events (VAEs) as defined by the Centers for Disease Control and Prevention (CDC) in 2008, 2013, and the correlation with ventilator-associated pneumonia (VAP) or tracheobronchitis (VAT).

Methods

This was a prospective, observational, multicenter, international study conducted at 13 intensive care units (ICUs); thirty consecutive adults mechanically ventilated for ≥ 48 h per site were eligible, with daily follow-up being recorded in a collaborative web database; VAEs were assessed using the 2013 CDC classification and its 2015 update.

Results

A total of 2856 ventilator days in 244 patients were analyzed, identifying 33 VAP and 51 VAT episodes; 30-day ICU mortality was significantly higher (42.8 vs. 19.6%, p < 0.007) in patients with VAP than in those with VAT. According to the 2013 CDC definitions, 117 VAEs were identified: 113 (96%) were infection-related ventilator-associated complication-plus (IVAC-plus), while possible ventilator-associated pneumonia (PVAP) was found in 64 (56.6%) of them. VAE increased the number of ventilator days and prolonged ICU and hospital LOS (by 5, 11, and 12 days, respectively), with a trend towards increased 30-day mortality (43 vs 28%, p = 0.06). Most episodes (26, 55%) classified as IVAC-plus without PVAP criteria were due to atelectasis. PVAP significantly increased (p < 0.05) ventilator days as well as ICU and hospital LOS (by 10.5, 14, and 13 days, respectively). Only 24 (72.7%) of VAP and 15 (29.4%) of VAT episodes met IVAC-plus criteria.

Conclusions

Respiratory infections (mainly VAT) were the most common complication. VAE algorithms only identified events with surrogates of severe oxygenation deterioration. As a consequence, IVAC definitions missed one fourth of the episodes of VAP and three fourths of the episodes of VAT. Identifying VAT (often missed by IVAC-plus criteria) is important, as VAP and VAT have different impacts on mortality.

Keywords

Ventilator-associated pneumonia Ventilator-associated tracheobronchitis Ventilator-associated events Surveillance Hypoxemia 

Abbreviations

ARDS

Acute respiratory distress syndrome

CDC

Centers for disease control and prevention

CFU

Colony-forming unit

ECCMID

European Congress of Clinical Microbiology and Infectious Diseases

ESM

Electronic supplementary material

ICU

Intensive care unit

IVAC

Infection-related ventilator-associated complication

LOS

Length of stay

PVAP

Possible ventilator-associated pneumonia

VAC

Ventilator-associated condition

VAE

Ventilator-associated event

VAP

Ventilator-associated pneumonia

VARI

Ventilator-associated respiratory infection

VAT

Ventilator-associated tracheobronchitis

Notes

Acknowledgements

This research was carried out as part of a PhD program in Health Science at the Universitat Autónoma de Barcelona, Spain and was supported by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Infections in Critically Ill Patients (ESGCIP), Basel, Switzerland and by Centro de Investigación Biomédica en Red—CIBERES CB06/06/036, Madrid, Spain. We thank Dr. Vandana KE, India, for English editing of the manuscript and critical comments.

Aliye Bastug, Ankara Numune Training and Research Hospital, Turkey; Amir Vahedian-Azimi, Baqiyatallah University of Medical Sciences, Vanak Square, Tehran, Iran; AsumanInan, Haydarpasa Numune Hospital, Istanbul, Turkey; Benito Almirante Gragera, Vall d´Hebron Barcelona Hospital Campus, Barcelona, Spain; Despoina Koulenti, University of Queensland, Brisbane, Australia and Attikon University Hospital, Athens, Greece; Garyphallia Poulakou, Attikon University Hospital, Athens, Greece; George Dimopoulos, Attikon University Hospital, Athens, Greece; Ilkay Bozkurt, Ondokuz Mayis University, Samsun, Turkey; Igor Muzlovic, University Medical Centre, Ljubljana, Slovenia; Izarne Totorika Hospital Universitario de Donostia, Donostia, Spain; Jordi Rello, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Kostoula Arvaniti, Papageorgiou General Hospital, Thessaloniki, Greece; Leonel Lagunes, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain; Lilla Bouadma, Hôpital Bichat-Claude-Bernard, Paris, France; Loreto Vidaur, Hospital Universitario de Donostia, Donostia, Spain; Marina Oikonomou, Papageorgiou General Hospital, Thessaloniki, Greece; MatteoBassetti, Infectious Diseases Clinic, Santa Maria Misericordia Hospital, University of Udine, Udine, Italy; Nefise Oztoprak, Antalya Education and Research Hospital, Turkey; Saad Nseir, Hospital Universitaire Lille, Lille, France; Sergio Ramírez-Estrada, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Yolanda Peña-López, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain

Supplementary material

134_2018_5269_MOESM1_ESM.docx (51 kb)
Supplementary material 1 (DOCX 52 kb)

References

  1. 1.
    Rello J, Diaz E, Mañez R, Sole-Violan J, Valles J, Vidaur L et al (2017) Improved survival among ICU-hospitalized patients with community-acquired pneumonia by unidentified organisms: a multicenter case–control study. Eur J Clin Microbiol Infect Dis 36:123–130CrossRefPubMedGoogle Scholar
  2. 2.
    Melsen WG, Rovers MM, Groenwold RHH, Bergmans DCJJ, Camus C, Bauer TT et al (2017) Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect Dis 13:665–671CrossRefGoogle Scholar
  3. 3.
    Center for Disease Control and Prevention. Ventilator-associated event. http://www.cdc.gov/nhsn/pdfs/pscmanual/10-vae_final.pdf. Accessed 18 Jun 2017
  4. 4.
    Vincent J-L, Rello J, Marshall J, Silva E, Anzueto A, Martin CD et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329CrossRefPubMedGoogle Scholar
  5. 5.
    Klompas M (2007) Does this patient have ventilator-associated pneumonia? JAMA 297:1583–1593CrossRefPubMedGoogle Scholar
  6. 6.
    Tejerina E, Esteban A, Fernández-Segoviano P, Frutos-Vivar F, Aramburu J, Ballesteros DR-BJ (2010) Accuracy of clinical definitions of ventilator-associated pneumonia: comparison with autopsy findings. J Crit Care 25:62–68CrossRefPubMedGoogle Scholar
  7. 7.
    Kerlin MP, Trick WE, Anderson DJ, Babcock HM, Lautenbach E, Gueret R et al (2017) Interrater reliability of surveillance for ventilator-associated events and pneumonia. Infect Control Hosp Epidemiol 38:172–178CrossRefPubMedGoogle Scholar
  8. 8.
    Muscedere JG, Day A, Heyland DK (2010) Mortality, attributable mortality, and clinical events as end points for clinical trials of ventilator-associated pneumonia and hospital-acquired pneumonia. Clin Infect Dis 51:120–125CrossRefGoogle Scholar
  9. 9.
    Magill SS, Klompas M, Balk R, Burns SM, Deutschman CS, Diekema D et al (2013) Developing a new national approach to surveillance for ventilator-associated events: executive summary. Am J Infect Control 41:1096–1099CrossRefPubMedGoogle Scholar
  10. 10.
    Ramírez-Estrada S. Ventilator-associated events in European intensive care units. The EU-VAE project. Abstract in: 26th European Congress of Clinical Microbiology and Infectious Diseases-ECMID; 2016 April 9–12, Amsterdam, Netherlands. Abstract EV089642Google Scholar
  11. 11.
    Ramírez-Estrada S. Looking inside the ventilator-associated events in European intensive care units—the EU-VAE project. Oral presentation in: 27th European Congress of Clinical Microbiology and Infectious Diseases-ECMID; 2017 April 22–25, Vienna, Austria. Oral presentation: OS010643Google Scholar
  12. 12.
    Knaus WA, Draper EA, Wagner DPZJ (1985) APACHE II: a severity of disease classification system. Crit Care Med 8:18–29Google Scholar
  13. 13.
    Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA et al (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101(1644):55Google Scholar
  14. 14.
    Magill SS, Li Q, Gross C, Dudeck M, Allen-Bridson K, Edwards JR (2016) Incidence and characteristics of ventilator-associated events reported to the national healthcare safety network in 2014. Crit Care Med 44:2154–2162CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pearson D, Hayashi Y, Richards B, Lipman J (2014) VAP, VAC, IVAC, and ventilator-associated events: the need for objectivity for surveillance. ICU Management & Practice. https://healthmanagement.org/c/icu/issuearticle/vap-vac-ivac-and-ventilator-associated-events-the-need-for-objectivity-for-surveillance. Accessed 15 Dec 2017
  16. 16.
    Nseir S, Favory R, Jozefowicz E, Decamps F, Dewavrin F, Brunin G et al (2008) Antimicrobial treatment for ventilator-associated tracheobronchitis: a randomized controlled multicenter study. Crit Care Med 12:62Google Scholar
  17. 17.
    Martin-Loeches I, Povoa P, Rodríguez A et al (2015) TAVeM study. Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): a multicentre, prospective, observational study. Lancet Respir Med 3:859–868CrossRefPubMedGoogle Scholar
  18. 18.
    Lichtenstein DA (2014) Lung ultrasound in the critically ill. Ann Intensive Care 9(4):1CrossRefGoogle Scholar
  19. 19.
    R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 23 may 2018Google Scholar
  20. 20.
    Fan Y, Gao F, Wu Y, Zhang J, Zhu M, Xiong L (2016) Does ventilator-associated event surveillance detect ventilator-associated pneumonia in intensive care units? A systematic review and meta-analysis. Crit Care 20:338CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vidaur L, Planas K, Sierra R, Dimopoulos G, Ramirez A, Lisboa T et al (2008) Ventilator-associated pneumonia: impact of organisms on clinical resolution and medical resources utilization. Chest 133:625–632CrossRefPubMedGoogle Scholar
  22. 22.
    Luna CM, Blanzaco D, Niederman MS, Matarucco W, Baredes NC, Desmery P et al (2003) Resolution of ventilator-associated pneumonia: prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome. Crit Care Med 3:676–682CrossRefGoogle Scholar
  23. 23.
    Klompas M, Magill S, Robicsek A et al (2012) Objective surveillance definitions for ventilator-associated pneumonia. Crit Care Med 12:3154–3161CrossRefGoogle Scholar
  24. 24.
    Mann T, Ellsworth J, Huda N, Neelakanta A, Chevalier T, Sims KL et al (2015) Building and validating a computerized algorithm for surveillance of ventilator-associated events. Infect Control Hosp Epidemiol 36:999–1003CrossRefPubMedGoogle Scholar
  25. 25.
    Nuckchady D, Heckman MG, Diehl NN, Creech T, Carey D, Domnick R et al (2015) Assessment of an automated surveillance system for detection of initial ventilator-associated events. Am J Infect Control 43:1119–1121CrossRefPubMedGoogle Scholar
  26. 26.
    Laffey JG, Bellani G, Pham T, Fan E, Madotto F, Bajwa EK et al (2016) Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med 42(1865–1876):38Google Scholar
  27. 27.
    Villar J, Pérez-Méndez L, Blanco J, Añón JM, Blanch L, Belda J et al (2013) A universal definition of ARDS: the PaO2/FiO2 ratio under a standard ventilatory setting a prospective, multicenter validation study. Intensive Care Med 39:583–592CrossRefPubMedGoogle Scholar
  28. 28.
    Bein T, Grasso S, Moerer O, Quintel M, Guerin C, Deja M et al (2016) The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med 42:699–711CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Boyer AF, Schoenberg N, Babcock H, McMullen KM, Micek ST, Kollef MH (2015) A prospective evaluation of ventilator-associated conditions and infection-related ventilator-associated conditions. Chest 147:68–81CrossRefPubMedGoogle Scholar
  30. 30.
    Klompas M, Khan Y, Kleinman K, Evans RS, Lloyd JF, Stevenson K et al (2011) Multicenter evaluation of a novel surveillance paradigm for complications of mechanicalventilation. PLoS One 6:e18062CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nair GB, Niederman MS (2015) Ventilator-associated pneumonia: present understanding and ongoing debates. Intensive Care Med 41:34–48CrossRefPubMedGoogle Scholar
  32. 32.
    Lewis SC, Li L, Murphy MV, Klompas M, Prevention Epicenters CDC (2014) Risk factors for ventilator-associated events: a case-control multivariable analysis. Crit Care Med 42:1839–1848CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Peña-López Y et al (2018) Assessing prediction accuracy for outcomes of ventilator-associated events and infctions in critically ill children: a prospective cohort study. Clin Microbiol Infect 24(7):732–737CrossRefPubMedGoogle Scholar
  34. 34.
    Gionfriddo A et al (2018) Retrospective application of new pediatric ventilator-associated pneumonia criteria identifies a high-risk population. Pediatr Crit Care Med 19(6):507–512CrossRefPubMedGoogle Scholar
  35. 35.
    Muscedere J, Sinuff T, Heyland DK, Dodek PM, Keenan SP, Wood G et al (2013) The clinical impact and preventability of ventilator-associated conditions in critically ill patients who are mechanically ventilated. Chest 144:1453–1460CrossRefPubMedGoogle Scholar
  36. 36.
    Klouwenberg PMCK, Van Mourik MSM, Ong DSY, Horn J, Schultz MJ, Cremer OL et al (2014) Electronic implementation of a novel surveillance paradigm for ventilator-associated events feasibility and validation. Am J Respir Crit Care Med 189:947–955CrossRefGoogle Scholar
  37. 37.
    Bouadma L, Sonneville R, Garrouste-Orgeas M, Darmon M, Souweine B, Voiriot G et al (2015) Ventilator-associated events: prevalence, outcome, and relationship with ventilator-associated pneumonia. Crit Care Med 43:1798–1806CrossRefPubMedGoogle Scholar
  38. 38.
    Klompas M (2010) Interobserver variability in ventilator-associated pneumonia surveillance. Am J Infect Control 38:237–239CrossRefPubMedGoogle Scholar
  39. 39.
    Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–332CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2018

Authors and Affiliations

  • Sergio Ramírez-Estrada
    • 1
    • 2
  • Leonel Lagunes
    • 2
    • 3
  • Yolanda Peña-López
    • 1
    • 2
  • Amir Vahedian-Azimi
    • 5
  • Saad Nseir
    • 6
    • 7
  • Kostoula Arvaniti
    • 8
  • Aliye Bastug
    • 9
  • Izarne Totorika
    • 10
  • Nefise Oztoprak
    • 11
  • Lilla Bouadma
    • 12
  • Despoina Koulenti
    • 13
    • 14
  • Jordi Rello
    • 1
    • 3
    • 4
    • 15
  • the EU-VAE Study Investigators Group
  1. 1.Vall d’Hebron Institute of ResearchBarcelonaSpain
  2. 2.Medicine DepartmentUniversitat Autónoma de BarcelonaBarcelonaSpain
  3. 3.Clinical Research in Pneumonia and SepsisVall d´Hebron Research InstituteBarcelonaSpain
  4. 4.European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Infections in Critically Ill Patients (ESGCIP)BaselSwitzerland
  5. 5.Trauma Research Center, Nursing FacultyBaqiyatallah University of Medical SciencesTehranIran
  6. 6.Critical Care CenterCentre Hospitalier Universitaire LilleLilleFrance
  7. 7.Inflammation Research International CenterUniversité LilleLilleFrance
  8. 8.Papageorgiou General HospitalThessaloníkiGreece
  9. 9.Infectious Diseases and Clinical Microbiology DepartmentAnkara Numune Training and Research HospitalAnkaraTurkey
  10. 10.Intensive Care DepartmentDonostia University HospitalDonostiaSpain
  11. 11.Antalya Education and Research HospitalAntalyaTurkey
  12. 12.Hôpital Bichat-Claude-BernardParisFrance
  13. 13.Burns, Trauma and Critical Care Research Centre-UQCCR, Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
  14. 14.Critical Care DepartmentAttikon University HospitalAthensGreece
  15. 15.Centro de Investigación Biomédica en Red, Enfermedades Respiratorias, CIBERESMadridSpain

Personalised recommendations