Intensive Care Medicine

, Volume 44, Issue 8, pp 1310–1314 | Cite as

Understanding the role of host immune responses in invasive candidiasis

  • Jigar V. Desai
  • Frank L. van de Veerdonk
  • Michail S. LionakisEmail author
Understanding the Disease

Invasive candidiasis is the most common nosocomial bloodstream mycosis in the ICU affecting > 250,000 individuals annually worldwide [1]. It is most often caused by Candida albicans, a commensal yeast of mucosal surfaces, although infections by non-albicans species, including C. glabrata, C. tropicalis and C. parapsilosis are increasing [1]. The recent global emergence of C. auris raises public health concerns because of the species’ multidrug-resistance and resilience to antiseptics, its misidentification by routine microbiological techniques, and its persistence on human skin and hospital environment that causes hospital-associated horizontal transmission and outbreaks [2].

Invasive candidiasis: when a commensal becomes an opportunistic pathogen

Candida asymptomatically colonizes the gastrointestinal mucosa in ~ 50–70% of healthy individuals. The recently-characterized inherited mutations that impair IL-17 immunity (IL17F/IL17RA/IL17RC/ACT1/RORC/STAT3/gain-of-function STAT1) have...



This work was supported by funding from the Division of Intramural Research (DIR), NIAID/NIH.

Compliance with ethical standard

Conflicts of interest

The authors declare no conflicts of interest pertaining to the contents of the current manuscript.

Supplementary material

134_2017_4988_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)


  1. 1.
    Kullberg BJ, Arendrup MC (2015) Invasive Candidiasis. N Engl J Med 373:1445–1456CrossRefPubMedGoogle Scholar
  2. 2.
    Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP (2017) Simultaneous emergence of multidrug-resistant candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 64:134–140CrossRefPubMedGoogle Scholar
  3. 3.
    Lionakis MS, Netea MG, Holland SM (2014) Mendelian genetics of human susceptibility to fungal infection. Cold Spring Harb Perspect Med 4:a019638CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gordon KB, Blauvelt A, Papp KA, Langley RG, Luger T, Ohtsuki M, Reich K, Amato D, Ball SG, Braun DK, Cameron GS, Erickson J, Konrad RJ, Muram TM, Nickoloff BJ, Osuntokun OO, Secrest RJ, Zhao F, Mallbris L, Leonardi CL (2016) Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N Engl J Med 375:345–356CrossRefPubMedGoogle Scholar
  5. 5.
    Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan X, Simms-Waldrip TR, Xie Y, Hooper LV, Koh AY (2015) Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med 21:808–814CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Timsit JF, Azoulay E, Schwebel C, Charles PE, Cornet M, Souweine B, Klouche K, Jaber S, Trouillet JL, Bruneel F, Argaud L, Cousson J, Meziani F, Gruson D, Paris A, Darmon M, Garrouste-Orgeas M, Navellou JC, Foucrier A, Allaouchiche B, Das V, Gangneux JP, Ruckly S, Maubon D, Jullien V, Wolff M, Group ET (2016) Empirical micafungin treatment and survival without invasive fungal infection in adults with ICU-Acquired sepsis, Candida colonization, and multiple organ failure: the EMPIRICUS randomized clinical trial. JAMA 316:1555–1564CrossRefPubMedGoogle Scholar
  7. 7.
    Netea MG, Joosten LA, van der Meer JW, Kullberg BJ, van de Veerdonk FL (2015) Immune defence against Candida fungal infections. Nat Rev Immunol 15:630–642CrossRefPubMedGoogle Scholar
  8. 8.
    Lionakis MS, Iliev ID, Hohl TM (2017) Immunity against fungi. JCI Insight. 2: pii: 93156CrossRefGoogle Scholar
  9. 9.
    Wan L, Zhang Y, Lai Y, Jiang M, Song Y, Zhou J, Zhang Z, Duan X, Fu Y, Liao L, Wang C (2015) Effect of granulocyte-macrophage colony-stimulating factor on prevention and treatment of invasive fungal disease in recipients of allogeneic stem-cell transplantation: a prospective multicenter randomized phase IV trial. J Clin Oncol 33:3999–4006CrossRefPubMedGoogle Scholar
  10. 10.
    Swamydas M, Gao JL, Break TJ, Johnson MD, Jaeger M, Rodriguez CA, Lim JK, Green NM, Collar AL, Fischer BG, Lee CC, Perfect JR, Alexander BD, Kullberg BJ, Netea MG, Murphy PM, Lionakis MS (2016) CXCR1-mediated neutrophil degranulation and fungal killing promote Candida clearance and host survival. Sci Transl Med 8:322ra310CrossRefGoogle Scholar
  11. 11.
    Kumar V, Cheng SC, Johnson MD, Smeekens SP, Wojtowicz A, Giamarellos-Bourboulis E, Karjalainen J, Franke L, Withoff S, Plantinga TS, van de Veerdonk FL, van der Meer JW, Joosten LA, Sokol H, Bauer H, Herrmann BG, Bochud PY, Marchetti O, Perfect JR, Xavier RJ, Kullberg BJ, Wijmenga C, Netea MG (2014) Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nat Commun 5:4675CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wojtowicz A, Tissot F, Lamoth F, Orasch C, Eggimann P, Siegemund M, Zimmerli S, Flueckiger UM, Bille J, Calandra T, Marchetti O, Bochud PY, Fungal Infection Network of S (2014) Polymorphisms in tumor necrosis factor-alpha increase susceptibility to intra-abdominal Candida infection in high-risk surgical ICU patients. Crit Care Med 42:e304–e308CrossRefPubMedGoogle Scholar
  13. 13.
    Shindo Y, Unsinger J, Burnham CA, Green JM, Hotchkiss RS (2015) Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock 43:334–343CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chang KC, Burnham CA, Compton SM, Rasche DP, Mazuski RJ, McDonough JS, Unsinger J, Korman AJ, Green JM, Hotchkiss RS (2013) Blockade ofthe negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis. Crit Care 17:85CrossRefGoogle Scholar
  15. 15.
    Chang K, Svabek C, Vazquez-Guillamet C, Sato B, Rasche D, Wilson S, Robbins P, Ulbrandt N, Suzich J, Green J, Patera AC, Blair W, Krishnan S, Hotchkiss R (2014) Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit Care 18:3CrossRefGoogle Scholar

Copyright information

© US Government (outside the USA) 2017

Authors and Affiliations

  • Jigar V. Desai
    • 1
  • Frank L. van de Veerdonk
    • 2
  • Michail S. Lionakis
    • 1
    Email author
  1. 1.Fungal Pathogenesis Section, Laboratory of Clinical Immunology and MicrobiologyNational Institute of Allergy & Infectious Diseases, National Institutes of HealthBethesdaUSA
  2. 2.Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands

Personalised recommendations