Advertisement

Intensive Care Medicine

, Volume 42, Issue 10, pp 1567–1575 | Cite as

Ventilator-related causes of lung injury: the mechanical power

  • L. Gattinoni
  • T. Tonetti
  • M. Cressoni
  • P. Cadringher
  • P. Herrmann
  • O. Moerer
  • A. Protti
  • M. Gotti
  • C. Chiurazzi
  • E. Carlesso
  • D. Chiumello
  • M. Quintel
Original

Abstract

Purpose

We hypothesized that the ventilator-related causes of lung injury may be unified in a single variable: the mechanical power. We assessed whether the mechanical power measured by the pressure–volume loops can be computed from its components: tidal volume (TV)/driving pressure (∆P aw), flow, positive end-expiratory pressure (PEEP), and respiratory rate (RR). If so, the relative contributions of each variable to the mechanical power can be estimated.

Methods

We computed the mechanical power by multiplying each component of the equation of motion by the variation of volume and RR:
$${\text{Power}}_{\text{rs}} = {\text{RR}} \cdot \left\{ {\Delta V^{2} \cdot \left[ {\frac{1}{2} \cdot {\text{EL}}_{\text{rs}} + {\text{RR}} \cdot \frac{{\left( {1 + I:E} \right)}}{60 \cdot I:E} \cdot R_{\text{aw}} } \right] + \Delta V \cdot {\text{PEEP}}} \right\},$$
where ∆V is the tidal volume, ELrs is the elastance of the respiratory system, I:E is the inspiratory-to-expiratory time ratio, and R aw is the airway resistance. In 30 patients with normal lungs and in 50 ARDS patients, mechanical power was computed via the power equation and measured from the dynamic pressure–volume curve at 5 and 15 cmH2O PEEP and 6, 8, 10, and 12 ml/kg TV. We then computed the effects of the individual component variables on the mechanical power.

Results

Computed and measured mechanical powers were similar at 5 and 15 cmH2O PEEP both in normal subjects and in ARDS patients (slopes = 0.96, 1.06, 1.01, 1.12 respectively, R 2 > 0.96 and p < 0.0001 for all). The mechanical power increases exponentially with TV, ∆P aw, and flow (exponent = 2) as well as with RR (exponent = 1.4) and linearly with PEEP.

Conclusions

The mechanical power equation may help estimate the contribution of the different ventilator-related causes of lung injury and of their variations. The equation can be easily implemented in every ventilator’s software.

Keywords

ARDS VILI Mechanical ventilation Respiratory mechanics 

Notes

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

134_2016_4505_MOESM1_ESM.pdf (377 kb)
Supplementary material 1 (PDF 376 kb)

References

  1. 1.
    Kumar A et al (1973) Pulmonary barotrauma during mechanical ventilation. Crit Care Med 1(4):181–186CrossRefPubMedGoogle Scholar
  2. 2.
    Dreyfuss D et al (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137(5):1159–1164CrossRefPubMedGoogle Scholar
  3. 3.
    Protti A et al. (2016) Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med 44(9):e838–e845. doi: 10.1097/CCM.0000000000001718 CrossRefPubMedGoogle Scholar
  4. 4.
    Hotchkiss JR Jr et al (2000) Effects of decreased respiratory frequency on ventilator-induced lung injury. Am J Respir Crit Care Med 161(2 Pt 1):463–468CrossRefPubMedGoogle Scholar
  5. 5.
    Cressoni M et al (2016) Mechanical power and development of ventilator-induced lung injury. Anesthesiology 124(5):1100–1108. doi: 10.1097/ALN.0000000000001056 CrossRefPubMedGoogle Scholar
  6. 6.
    Gattinoni L et al (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136(3):730–736CrossRefPubMedGoogle Scholar
  7. 7.
    Cressoni M et al (2014) Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 189(2):149–158PubMedGoogle Scholar
  8. 8.
    Gattinoni L et al (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151(6):1807–1814CrossRefPubMedGoogle Scholar
  9. 9.
    Tremblay L et al (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Investig 99(5):944–952CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Otis AB, Fenn WO, Rahn H (1950) Mechanics of breathing in man. J Appl Physiol 2(11):592–607PubMedGoogle Scholar
  11. 11.
    Marini JJ, Crooke PS 3rd (1993) A general mathematical model for respiratory dynamics relevant to the clinical setting. Am Rev Respir Dis 147(1):14–24CrossRefPubMedGoogle Scholar
  12. 12.
    Chiumello D et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178(4):346–355CrossRefPubMedGoogle Scholar
  13. 13.
    Valenza F et al (2003) Positive end-expiratory pressure delays the progression of lung injury during ventilator strategies involving high airway pressure and lung overdistention. Crit Care Med 31(7):1993–1998CrossRefPubMedGoogle Scholar
  14. 14.
    Brunner JX, Wysocki M (2009) Is there an optimal breath pattern to minimize stress and strain during mechanical ventilation? Intensive Care Med 35(8):1479–1483CrossRefPubMedGoogle Scholar
  15. 15.
    Caironi P et al (2011) Time to generate ventilator-induced lung injury among mammals with healthy lungs: a unifying hypothesis. Intensive Care Med 37(12):1913–1920CrossRefPubMedGoogle Scholar
  16. 16.
    Rodarte JR, Rehder K (1986) Dynamics of respiration. In: Macklem PT, Mead J (eds) Handbook of Physiology. Williams & Wilkins, Baltimore, pp 131–144Google Scholar
  17. 17.
    Pelosi P et al (1995) Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med 152(2):531–537CrossRefPubMedGoogle Scholar
  18. 18.
    Guerin C, Fournier G, Milic-Emili J (2001) Effects of PEEP on inspiratory resistance in mechanically ventilated COPD patients. Eur Respir J 18(3):491–498CrossRefPubMedGoogle Scholar
  19. 19.
    Protti A et al (2015) Lung anatomy, energy load, and ventilator-induced lung injury. Intensive Care Med Exp 3(1):34CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gattinoni L, Pesenti A (2005) The concept of “baby lung”. Intensive Care Med 31(6):776–784CrossRefPubMedGoogle Scholar
  21. 21.
    Bachofen H, Hildebrandt J (1971) Area analysis of pressure-volume hysteresis in mammalian lungs. J Appl Physiol 30(4):493–497PubMedGoogle Scholar
  22. 22.
    Fredberg JJ, Stamenovic D (1989) On the imperfect elasticity of lung tissue. J Appl Physiol 67(6):2408–2419PubMedGoogle Scholar
  23. 23.
    Gattinoni L et al (2016) The “baby lung” became an adult. Intensive Care Med 42(5):663–673CrossRefPubMedGoogle Scholar
  24. 24.
    Amato MBP et al (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med 342(18):301–308Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • L. Gattinoni
    • 1
  • T. Tonetti
    • 1
  • M. Cressoni
    • 2
  • P. Cadringher
    • 3
  • P. Herrmann
    • 1
  • O. Moerer
    • 1
  • A. Protti
    • 3
  • M. Gotti
    • 2
  • C. Chiurazzi
    • 2
  • E. Carlesso
    • 2
  • D. Chiumello
    • 4
  • M. Quintel
    • 1
  1. 1.Department of Anesthesiology, Emergency and Intensive Care MedicineUniversity of GöttingenGöttingenGermany
  2. 2.Dipartimento di Fisiopatologia Medico-Chirurgica e dei TrapiantiUniversità degli Studi di MilanoMilanItaly
  3. 3.Dipartimento di Anestesia, Rianimazione, ed Emergenza UrgenzaFondazione Ca’ Granda, Ospedale Maggiore PoliclinicoMilanItaly
  4. 4.Dipartimento di Scienze della SaluteUniversità degli Studi di MilanoMilanItaly

Personalised recommendations